In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, to obtain numerical solutions to ordinary differential equations (ODEs) with high accuracy and comparatively little computational effort. It is named after Roland Bulirsch and Josef Stoer. It is sometimes called the Gragg–Bulirsch–Stoer (GBS) algorithm because of the importance of a result about the error function of the modified midpoint method, due to William B. Gragg.