The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types A n {\displaystyle A_{n}} , B n {\displaystyle B_{n}} , C n {\displaystyle C_{n}} and D n {\displaystyle D_{n}} , where for g l ( n ) {\displaystyle {\mathfrak {gl}}(n)} the general linear Lie algebra and I n {\displaystyle I_{n}} the n × n {\displaystyle n\times n} identity matrix:
Except for the low-dimensional cases D 1 = s o ( 2 ) {\displaystyle D_{1}={\mathfrak {so}}(2)} and D 2 = s o ( 4 ) {\displaystyle D_{2}={\mathfrak {so}}(4)} , the classical Lie algebras are simple.
The Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras.