The growth function, also called the shatter coefficient or the shattering number, measures the richness of a set family or class of functions. It is especially used in the context of statistical learning theory, where it is used to study properties of statistical learning methods. The term 'growth function' was coined by Vapnik and Chervonenkis in their 1968 paper, where they also proved many of its properties. It is a basic concept in machine learning.