In statistics, the generalized Dirichlet distribution (GD) is a generalization of the Dirichlet distribution with a more general covariance structure and almost twice the number of parameters. Random vectors with a GD distribution are completely neutral.
The density function of p 1 , … , p k − 1 {\displaystyle p_{1},\ldots ,p_{k-1}} is
where we define p k = 1 − ∑ i = 1 k − 1 p i {\textstyle p_{k}=1-\sum _{i=1}^{k-1}p_{i}} . Here B ( x , y ) {\displaystyle B(x,y)} denotes the Beta function. This reduces to the standard Dirichlet distribution if b i − 1 = a i + b i {\displaystyle b_{i-1}=a_{i}+b_{i}} for 2 ⩽ i ⩽ k − 1 {\displaystyle 2\leqslant i\leqslant k-1} ( b 0 {\displaystyle b_{0}} is arbitrary).
For example, if k=4, then the density function of p 1 , p 2 , p 3 {\displaystyle p_{1},p_{2},p_{3}} is
where p 1 + p 2 + p 3 < 1 {\displaystyle p_{1}+p_{2}+p_{3}<1} and p 4 = 1 − p 1 − p 2 − p 3 {\displaystyle p_{4}=1-p_{1}-p_{2}-p_{3}} .
Connor and Mosimann define the PDF as they did for the following reason. Define random variables z 1 , … , z k − 1 {\displaystyle z_{1},\ldots ,z_{k-1}} with z 1 = p 1 , z 2 = p 2 / ( 1 − p 1 ) , z 3 = p 3 / ( 1 − ( p 1 + p 2 ) ) , … , z i = p i / ( 1 − ( p 1 + ⋯ + p i − 1 ) ) {\displaystyle z_{1}=p_{1},z_{2}=p_{2}/\left(1-p_{1}\right),z_{3}=p_{3}/\left(1-(p_{1}+p_{2})\right),\ldots ,z_{i}=p_{i}/\left(1-\left(p_{1}+\cdots +p_{i-1}\right)\right)} . Then p 1 , … , p k {\displaystyle p_{1},\ldots ,p_{k}} have the generalized Dirichlet distribution as parametrized above, if the z i {\displaystyle z_{i}} are independent beta with parameters a i , b i {\displaystyle a_{i},b_{i}} , i = 1 , … , k − 1 {\displaystyle i=1,\ldots ,k-1} .