The sum of the reciprocals of all prime numbers diverges; that is: ∑ p prime 1 p = 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + 1 13 + 1 17 + ⋯ = ∞ {\displaystyle \sum _{p{\text{ prime}}}{\frac {1}{p}}={\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{5}}+{\frac {1}{7}}+{\frac {1}{11}}+{\frac {1}{13}}+{\frac {1}{17}}+\cdots =\infty }
This was proved by Leonhard Euler in 1737, and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).
There are a variety of proofs of Euler's result, including a lower bound for the partial sums stating that ∑ p prime p ≤ n 1 p ≥ log log ( n + 1 ) − log π 2 6 {\displaystyle \sum _{\scriptstyle p{\text{ prime}} \atop \scriptstyle p\leq n}{\frac {1}{p}}\geq \log \log(n+1)-\log {\frac {\pi ^{2}}{6}}} for all natural numbers n. The double natural logarithm (log log) indicates that the divergence might be very slow, which is indeed the case. See Meissel–Mertens constant.