Phosphasilenes or silylidenephosphanes are a class of compounds with silicon-phosphorus double bonds. Since the electronegativity of phosphorus (2.1) is higher than that of silicon (1.9), the "Si=P" moiety of phosphasilene is polarized. The degree of polarization can be tuned by altering the coordination numbers of the Si and P centers, or by modifying the electronic properties of the substituents. The phosphasilene Si=P double bond is highly reactive, yet with the choice of proper substituents, it can be stabilized via donor-acceptor interaction or by steric congestion.
The landmark discovery of the first phosphasilene by NMR spectroscopy was made in 1984 by Bickelhaupt et al. The first phosphasilene came with bulky aryl substituents at the phosphorus and silicon atoms. Almost a decade after this spectroscopic observation, the first structural characterization of phosphasilene was achieved in 1993 by Niecke et al. The successful isolation of phosphasilenes with silicon-phosphorus double bonds represents one of the discoveries that challenged and disproved the "double-bond rule".