In geometry, the Perles configuration is a system of nine points and nine lines in the Euclidean plane for which every combinatorially equivalent realization has at least one irrational number as one of its coordinates. It can be constructed from the diagonals and symmetry lines of a regular pentagon, and their crossing points. All of the realizations of the Perles configuration in the projective plane are equivalent to each other under projective transformations.
The Perles configuration is the smallest configuration of points and lines that cannot be realized with rational coordinates. It is named after Micha Perles, who used it to construct an eight-dimensional convex polytope that cannot be given rational number coordinates and that have the fewest vertices (twelve) of any known irrational polytope.