In group theory, the Pohlig–Hellman algorithm, sometimes credited as the Silver–Pohlig–Hellman algorithm, is a special-purpose algorithm for computing discrete logarithms in a finite abelian group whose order is a smooth integer.
The algorithm was introduced by Roland Silver, but first published by Stephen Pohlig and Martin Hellman, who credit Silver with its earlier independent but unpublished discovery. Pohlig and Hellman also list Richard Schroeppel and H. Block as having found the same algorithm, later than Silver, but again without publishing it.