The hole drilling method is a method for measuring residual stresses, in a material. Residual stress occurs in a material in the absence of external loads. Residual stress interacts with the applied loading on the material to affect the overall strength, fatigue, and corrosion performance of the material. Residual stresses are measured through experiments. The hole drilling method is one of the most used methods for residual stress measurement.
The hole drilling method can measure macroscopic residual stresses near the material surface. The principle is based on drilling of a small hole into the material. When the material containing residual stress is removed the remaining material reaches a new equilibrium state. The new equilibrium state has associated deformations around the drilled hole. The deformations are related to the residual stress in the volume of material that was removed through drilling. The deformations around the hole are measured during the experiment using strain gauges or optical methods. The original residual stress in the material is calculated from the measured deformations. The hole drilling method is popular for its simplicity and it is suitable for a wide range of applications and materials.
Key advantages of the hole drilling method include rapid preparation, versatility of the technique for different materials, and reliability. Conversely, the hole drilling method is limited in depth of analysis and specimen geometry, and is at least semi-destructive.