A bio-based material is a material intentionally made, either wholly or partially, from substances derived from living (or once-living) organisms, such as plants, animals, enzymes, and microorganisms, including bacteria, fungi and yeast.
Due to their main characteristics of being renewable and to their ability to store carbon over their growth, recent years assisted to their upsurge as a valid alternative compared to more traditional materials in view of climate mitigation.
In European context, more specifically, European Union, which has set 2050 as a target date to reach climate neutrality, is trying to implement, among other measures, the production and utilization of bio-based materials in many diverse sectors. Indeed, several European regulations, such as the European Industrial Strategy, the EU Biotechnology and Biomanufacturing Initiative and the Circular Action Plan, emphasize bio-materials. These regulations aim to support innovation, investment, and market adoption of bio-materials while enhancing the transition towards a circular economy where resources are used more efficiently. In this regard, the application of bio-based materials has been already tested on several market segments, ranging from the production of chemicals, to packaging and textiles, till the fabrication of full construction components.
Bio-based materials can differ depending on the origin of the biomass they're mostly constituted. Moreover, they can be differently manufactured, resulting in either simple or more complex engineered bio-products, which can be used for many applications. Among processed materials, it is possible to distinguish between bio-based polymers, bio-based plastics, bio-based chemical fibres, bio-based leather, bio-based rubber, bio-based coatings, bio-based material additives, bio-based composites. Unprocessed materials, instead, may be called biotic material.