In mathematics, a filtered algebra is a generalization of the notion of a graded algebra. Examples appear in many branches of mathematics, especially in homological algebra and representation theory.
A filtered algebra over the field k {\displaystyle k} is an algebra ( A , ⋅ ) {\displaystyle (A,\cdot )} over k {\displaystyle k} that has an increasing sequence { 0 } ⊆ F 0 ⊆ F 1 ⊆ ⋯ ⊆ F i ⊆ ⋯ ⊆ A {\displaystyle \{0\}\subseteq F_{0}\subseteq F_{1}\subseteq \cdots \subseteq F_{i}\subseteq \cdots \subseteq A} of subspaces of A {\displaystyle A} such that
and that is compatible with the multiplication in the following sense: