In algebra, a multilinear polynomial is a multivariate polynomial that is linear (meaning affine) in each of its variables separately, but not necessarily simultaneously. It is a polynomial in which no variable occurs to a power of 2 {\displaystyle 2} or higher; that is, each monomial is a constant times a product of distinct variables. For example f ( x , y , z ) = 3 x y + 2.5 y − 7 z {\displaystyle f(x,y,z)=3xy+2.5y-7z} is a multilinear polynomial of degree 2 {\displaystyle 2} (because of the monomial 3 x y {\displaystyle 3xy} ) whereas f ( x , y , z ) = x 2 + 4 y {\displaystyle f(x,y,z)=x^{2}+4y} is not. The degree of a multilinear polynomial is the maximum number of distinct variables occurring in any monomial.