The inelastic mean free path (IMFP) is an index of how far an electron on average travels through a solid before losing energy.
If a monochromatic, primary beam of electrons is incident on a solid surface, the majority of incident electrons lose their energy because they interact strongly with matter, leading to plasmon excitation, electron-hole pair formation, and vibrational excitation. The intensity of the primary electrons, I0, is damped as a function of the distance, d, into the solid. The intensity decay can be expressed as follows:
where I(d) is the intensity after the primary electron beam has traveled through the solid to a distance d. The parameter λ(E), termed the inelastic mean free path (IMFP), is defined as the distance an electron beam can travel before its intensity decays to 1/e of its initial value. (Note that this is equation is closely related to the Beer–Lambert law.)
The inelastic mean free path of electrons can roughly be described by a universal curve that is the same for all materials.
The knowledge of the IMFP is indispensable for several electron spectroscopy and microscopy measurements.