In experiments, a spillover is an indirect effect on a subject not directly treated by the experiment. These effects are useful for policy analysis but complicate the statistical analysis of experiments.
Analysis of spillover effects involves relaxing the non-interference assumption, or SUTVA (Stable Unit Treatment Value Assumption). This assumption requires that subject i's revelation of its potential outcomes depends only on that subject i's own treatment status, and is unaffected by another subject j's treatment status. In ordinary settings where the researcher seeks to estimate the average treatment effect ( A T E ^ {\displaystyle {\widehat {ATE}}} ), violation of the non-interference assumption means that traditional estimators for the ATE, such as difference-in-means, may be biased. However, there are many real-world instances where a unit's revelation of potential outcomes depend on another unit's treatment assignment, and analyzing these effects may be just as important as analyzing the direct effect of treatment.
One solution to this problem is to redefine the causal estimand of interest by redefining a subject's potential outcomes in terms of one's own treatment status and related subjects' treatment status. The researcher can then analyze various estimands of interest separately. One important assumption here is that this process captures all patterns of spillovers, and that there are no unmodeled spillovers remaining (ex. spillovers occur within a two-person household but not beyond).
Once the potential outcomes are redefined, the rest of the statistical analysis involves modeling the probabilities of being exposed to treatment given some schedule of treatment assignment, and using inverse probability weighting (IPW) to produce unbiased (or asymptotically unbiased) estimates of the estimand of interest.