In mathematics, a dependence relation is a binary relation which generalizes the relation of linear dependence.
Let X {\displaystyle X} be a set. A (binary) relation ◃ {\displaystyle \triangleleft } between an element a {\displaystyle a} of X {\displaystyle X} and a subset S {\displaystyle S} of X {\displaystyle X} is called a dependence relation, written a ◃ S {\displaystyle a\triangleleft S} , if it satisfies the following properties:
Given a dependence relation ◃ {\displaystyle \triangleleft } on X {\displaystyle X} , a subset S {\displaystyle S} of X {\displaystyle X} is said to be independent if a ⋪ S − { a } {\displaystyle a\ntriangleleft S-\lbrace a\rbrace } for all a ∈ S . {\displaystyle a\in S.} If S ⊆ T {\displaystyle S\subseteq T} , then S {\displaystyle S} is said to span T {\displaystyle T} if t ◃ S {\displaystyle t\triangleleft S} for every t ∈ T . {\displaystyle t\in T.} S {\displaystyle S} is said to be a basis of X {\displaystyle X} if S {\displaystyle S} is independent and S {\displaystyle S} spans X . {\displaystyle X.}
If X {\displaystyle X} is a non-empty set with a dependence relation ◃ {\displaystyle \triangleleft } , then X {\displaystyle X} always has a basis with respect to ◃ . {\displaystyle \triangleleft .} Furthermore, any two bases of X {\displaystyle X} have the same cardinality.
If a ◃ S {\displaystyle a\triangleleft S} and S ⊆ T {\displaystyle S\subseteq T} , then a ◃ T {\displaystyle a\triangleleft T} , using property 3. and 1.