In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form
where x ≠ 0 {\displaystyle x\neq 0} is a vector, and M {\displaystyle M} is a matrix-valued function of the number λ {\displaystyle \lambda } . The number λ {\displaystyle \lambda } is known as the (nonlinear) eigenvalue, the vector x {\displaystyle x} as the (nonlinear) eigenvector, and ( λ , x ) {\displaystyle (\lambda ,x)} as the eigenpair. The matrix M ( λ ) {\displaystyle M(\lambda )} is singular at an eigenvalue λ {\displaystyle \lambda } .