In linear algebra, a column vector with m {\displaystyle m} elements is an m × 1 {\displaystyle m\times 1} matrix consisting of a single column of m {\displaystyle m} entries, for example, x = [ x 1 x 2 ⋮ x m ] . {\displaystyle {\boldsymbol {x}}={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}.}
Similarly, a row vector is a 1 × n {\displaystyle 1\times n} matrix for some n {\displaystyle n} , consisting of a single row of n {\displaystyle n} entries, a = [ a 1 a 2 … a n ] . {\displaystyle {\boldsymbol {a}}={\begin{bmatrix}a_{1}&a_{2}&\dots &a_{n}\end{bmatrix}}.} (Throughout this article, boldface is used for both row and column vectors.)
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: [ x 1 x 2 … x m ] T = [ x 1 x 2 ⋮ x m ] {\displaystyle {\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}^{\rm {T}}={\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}} and [ x 1 x 2 ⋮ x m ] T = [ x 1 x 2 … x m ] . {\displaystyle {\begin{bmatrix}x_{1}\\x_{2}\\\vdots \\x_{m}\end{bmatrix}}^{\rm {T}}={\begin{bmatrix}x_{1}\;x_{2}\;\dots \;x_{m}\end{bmatrix}}.}
The set of all row vectors with n entries in a given field (such as the real numbers) forms an n-dimensional vector space; similarly, the set of all column vectors with m entries forms an m-dimensional vector space.
The space of row vectors with n entries can be regarded as the dual space of the space of column vectors with n entries, since any linear functional on the space of column vectors can be represented as the left-multiplication of a unique row vector.