In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially varying magnetic field to create a trap which can produce samples of cold neutral atoms. Temperatures achieved in a MOT can be as low as several microkelvins, depending on the atomic species, which is two or three times below the photon-recoil limit. However, for atoms with an unresolved hyperfine structure, such as 7Li, the temperature achieved in a MOT will be higher than the Doppler cooling limit.
A MOT is formed from the intersection of the zero of a weak quadrupolar magnetic field and six circularly polarized red-detuned optical molasses beams. Counterpropagating beams have opposite handed polarization. As atoms travel away from the zero field at the center of the trap, the spatially varying Zeeman shift brings an atomic transition into resonance with the laser beams. The polarization of the beam propagating in the opposite direction of this atomic motion is chosen to drive this transition. The absorption of these photons gives rise to a scattering force that pushes the atoms back towards the center of the trap.
In this way, a MOT is able to trap and cool atoms over repeated absorption and spontaneous emission cycles with initial velocities of hundreds of meters per second down to tens of centimeters per second (again, depending upon the atomic species).