β-Hydride elimination is a reaction in which a metal-alkyl centre is converted into the corresponding metal-hydride-alkene. β-Hydride elimination can also occur for many alkoxide complexes as well. The main requirements are that the alkyl group possess a C-H bond β to the metal and that the metal be coordinatively unsaturated. Thus, metal-butyl complexes are susceptible to this reaction whereas metal-methyl complexes are not. The complex must have an empty (or vacant) site cis to the alkyl group for this reaction to occur. β-Hydride elimination, which can be desirable or undesirable, affects the behavior of many organometallic complexes.
Moreover, for facile cleavage of the C–H bond, a d electron pair is needed for donation into the σ* orbital of the C–H bond. Thus, d0 metals alkyls are generally more stable to β-hydride elimination than d2 and higher metal alkyls and may form isolable agostic complexes, even if an empty coordination site is available.