The Karloff–Zwick algorithm, in computational complexity theory, is a randomised approximation algorithm taking an instance of MAX-3SAT Boolean satisfiability problem as input. If the instance is satisfiable, then the expected weight of the assignment found is at least 7/8 of optimal. There is strong evidence (but not a mathematical proof) that the algorithm achieves 7/8 of optimal even on unsatisfiable MAX-3SAT instances. Howard Karloff and Uri Zwick presented the algorithm in 1997.
The algorithm is based on semidefinite programming. It can be derandomized using, e.g., the techniques from to yield a deterministic polynomial-time algorithm with the same approximation guarantees.