Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Accessibility relation
Modal logic relationship

An accessibility relation is a relation which plays a key role in assigning truth values to sentences in the relational semantics for modal logic. In relational semantics, a modal formula's truth value at a possible world w {\displaystyle w} can depend on what is true at another possible world v {\displaystyle v} , but only if the accessibility relation R {\displaystyle R} relates w {\displaystyle w} to v {\displaystyle v} . For instance, if P {\displaystyle P} holds at some world v {\displaystyle v} such that w R v {\displaystyle wRv} , the formula ◊ P {\displaystyle \Diamond P} will be true at w {\displaystyle w} . The fact w R v {\displaystyle wRv} is crucial. If R {\displaystyle R} did not relate w {\displaystyle w} to v {\displaystyle v} , then ◊ P {\displaystyle \Diamond P} would be false at w {\displaystyle w} unless P {\displaystyle P} also held at some other world u {\displaystyle u} such that w R u {\displaystyle wRu} .

Accessibility relations are motivated conceptually by the fact that natural language modal statements depend on some, but not all, alternative scenarios. For instance, the sentence "It might be raining" is not generally judged true simply because one can imagine a scenario where it is raining. Rather, its truth depends on whether such a scenario is ruled out by available information. This fact can be formalized in modal logic by choosing an accessibility relation such that w R v {\displaystyle wRv} if v {\displaystyle v} is compatible with the information that is available to the speaker in w {\displaystyle w} .

This idea can be extended to various applications of modal logic. In epistemic logic, one can use an epistemic notion of accessibility where w R v {\displaystyle wRv} for an individual I {\displaystyle I} if I {\displaystyle I} does not know something which would rule out the hypothesis that w ′ = v {\displaystyle w'=v} . In deontic logic, one can say that w R v {\displaystyle wRv} if v {\displaystyle v} is a morally ideal world given the moral standards of w {\displaystyle w} . In the application of modal logic to computer science, possible worlds can be understood as representing possible states of a system and the accessibility relation can be understood as representing state transitions (see Kripke structure (model checking)). Then w R v {\displaystyle wRv} if the system can transition from state w {\displaystyle w} to state v {\displaystyle v} .

Different applications of modal logic can suggest different restrictions on admissible accessibility relations, which can in turn lead to different validities. The mathematical study of how validities are tied to conditions on accessibility relations is known as modal correspondence theory.

Related Image Collections Add Image
We don't have any YouTube videos related to Accessibility relation yet.
We don't have any PDF documents related to Accessibility relation yet.
We don't have any Books related to Accessibility relation yet.
We don't have any archived web articles related to Accessibility relation yet.

See also

  • Gerla, G.; Transformational semantics for first order logic, Logique et Analyse, No. 117–118, pp. 69–79, 1987.
  • Fitelson, Brandon; Notes on "Accessibility" and Modality, 2003.
  • Brown, Curtis; Propositional Modal Logic: A Few First Steps, 2002.
  • Kripke, Saul; Naming and Necessity, Oxford, 1980.
  • Lewis, David K. (1968). "Counterpart Theory and Quantified Modal Logic". The Journal of Philosophy. 65 (5): 113–126. doi:10.2307/2024555. JSTOR 2024555.
  • Gasquet, Olivier; et al. (2013). Kripke's Worlds: An Introduction to Modal Logics via Tableaux. Springer. pp. 14–16. ISBN 978-3764385033. Retrieved 23 July 2020.
  • List of Logic Systems List of most of the more popular modal logics.

References

  1. Blackburn, Patrick; de Rijke, Maarten; Venema, Yde (2001). Modal Logic. Cambridge Tracts in Theoretical Computer Science. ISBN 9780521527149. 9780521527149

  2. van Benthem, Johan (2010). Modal Logic for Open Minds (PDF). CSLI. S2CID 62162288. Archived from the original (PDF) on 2020-02-19. https://web.archive.org/web/20200219165057/https://pdfs.semanticscholar.org/9bea/866c143326aeb700c20165a933f583b16a46.pdf