Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Adaptive estimator

In statistics, an adaptive estimator is an estimator in a parametric or semiparametric model with nuisance parameters such that the presence of these nuisance parameters does not affect efficiency of estimation.

We don't have any images related to Adaptive estimator yet.
We don't have any YouTube videos related to Adaptive estimator yet.
We don't have any PDF documents related to Adaptive estimator yet.
We don't have any Books related to Adaptive estimator yet.
We don't have any archived web articles related to Adaptive estimator yet.

Definition

Formally, let parameter θ in a parametric model consists of two parts: the parameter of interest νN ⊆ Rk, and the nuisance parameter ηH ⊆ Rm. Thus θ = (ν,η) ∈ N×H ⊆ Rk+m. Then we will say that ν ^ n {\displaystyle \scriptstyle {\hat {\nu }}_{n}} is an adaptive estimator of ν in the presence of η if this estimator is regular, and efficient for each of the submodels1

P ν ( η 0 ) = { P θ : ν ∈ N , η = η 0 } . {\displaystyle {\mathcal {P}}_{\nu }(\eta _{0})={\big \{}P_{\theta }:\nu \in N,\,\eta =\eta _{0}{\big \}}.}

Adaptive estimator estimates the parameter of interest equally well regardless whether the value of the nuisance parameter is known or not.

The necessary condition for a regular parametric model to have an adaptive estimator is that

I ν η ( θ ) = E ⁡ [ z ν z η ′ ] = 0 for all  θ , {\displaystyle I_{\nu \eta }(\theta )=\operatorname {E} [\,z_{\nu }z_{\eta }'\,]=0\quad {\text{for all }}\theta ,}

where zν and zη are components of the score function corresponding to parameters ν and η respectively, and thus Iνη is the top-right k×m block of the Fisher information matrix I(θ).

Example

Suppose P {\displaystyle \scriptstyle {\mathcal {P}}} is the normal location-scale family:

P = {   f θ ( x ) = 1 2 π σ e − 1 2 σ 2 ( x − μ ) 2   |   μ ∈ R , σ > 0   } . {\displaystyle {\mathcal {P}}={\Big \{}\ f_{\theta }(x)={\tfrac {1}{{\sqrt {2\pi }}\sigma }}e^{-{\frac {1}{2\sigma ^{2}}}(x-\mu )^{2}}\ {\Big |}\ \mu \in \mathbb {R} ,\sigma >0\ {\Big \}}.}

Then the usual estimator μ ^ = x ¯ {\displaystyle {\hat {\mu }}\,=\,{\bar {x}}} is adaptive: we can estimate the mean equally well whether we know the variance or not.

Notes

Basic references

  • Bickel, Peter J.; Chris A.J. Klaassen; Ya’acov Ritov; Jon A. Wellner (1998). Efficient and adaptive estimation for semiparametric models. Springer: New York. ISBN 978-0-387-98473-5.{{cite book}}: CS1 maint: publisher location (link)

Other useful references

References

  1. Bickel 1998, Definition 2.4.1 - Bickel, Peter J.; Chris A.J. Klaassen; Ya’acov Ritov; Jon A. Wellner (1998). Efficient and adaptive estimation for semiparametric models. Springer: New York. ISBN 978-0-387-98473-5.