Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Allotropes of boron
Materials made only out of boron

Boron can be prepared in several crystalline and amorphous forms. Well known crystalline forms are α-rhombohedral (α-R), β-rhombohedral (β-R), and β-tetragonal (β-T). In special circumstances, boron can also be synthesized in the form of its α-tetragonal (α-T) and γ-orthorhombic (γ) allotropes. Two amorphous forms, one a finely divided powder and the other a glassy solid, are also known. Although at least 14 more allotropes have been reported, these other forms are based on tenuous evidence or have not been experimentally confirmed, or are thought to represent mixed allotropes, or boron frameworks stabilized by impurities. Whereas the β-rhombohedral phase is the most stable and the others are metastable, the transformation rate is negligible at room temperature, and thus all five phases can exist at ambient conditions. Amorphous powder boron and polycrystalline β-rhombohedral boron are the most common forms. The latter allotrope is a very hard grey material, about ten percent lighter than aluminium and with a melting point (2080 °C) several hundred degrees higher than that of steel.

Elemental boron has been found in star dust and meteorites, but does not exist in the high oxygen environment of Earth. It is difficult to extract from its compounds. The earliest methods involved reduction of boric oxide with metals such as magnesium or aluminium. However, the product is almost always contaminated with metal borides. Pure boron can be prepared by reducing volatile boron halides with hydrogen at high temperatures. Very pure boron, for use in the semiconductor industry, is produced by the decomposition of diborane at high temperatures, followed by purification via zone melting or the Czochralski process. Even more difficult to prepare are single crystals of pure boron phases, due to polymorphism and the tendency of boron to react with impurities; typical crystal size is ~0.1 mm.

Related Image Collections Add Image
We don't have any YouTube videos related to Allotropes of boron yet.
We don't have any PDF documents related to Allotropes of boron yet.
We don't have any Books related to Allotropes of boron yet.
We don't have any archived web articles related to Allotropes of boron yet.

Summary of properties

Boron phaseα-Rα-Tβ-Rβ-Tγamorphous
PowderGlassy
SymmetryRhombohedralTetragonalRhombohedralTetragonalOrthorhombicSemi-randomSemi-random
Occurrencecommonspecialcommoncommonspecial
Atoms/unit cell131250105‒10819228
Density (g/cm3)142.462.29‒2.39152.352.362.521.732.34–35
Vickers hardness161742 GPa45 GPa50–58 GPa
Bulk modulus1819224 GPa184 GPa227 GPa
Band gap (eV)2201.55211.6221.16232.1240.56–0.7125
ColorCrystals areclear redBlack andopaque, withmetallic lustreDark to shinysilver-greyBlack/redDark greyBlack tobrownOpaqueblack
Source262728293031323334
Year first reported3519581943/19733619571960200937180819113839

α-rhombohedral boron

α-rhombohedral boron has a unit cell of twelve boron atoms. The structure consists of B12 icosahedra in which each boron atom has five nearest neighbors within the icosahedron. If the bonding were the conventional covalent type then each boron would have donated five electrons. However, boron has only three valence electrons, and it is thought that the bonding in the B12 icosahedra is achieved by the so-called 3-center electron-deficient bonds where the electron charge is accumulated at the center of a triangle formed by three adjacent atoms.40

The isolated B12 icosahedra are not stable, due to the nonuniformity of the honeycomb; thus boron is not a molecular solid, but the icosahedra in it are connected by strong covalent bonds.

α-tetragonal boron

Pure α-tetragonal can only be synthesized as thin layers deposited on an underlying substrate of isotropic boron carbide (B50C2) or nitride (B50N2).41 Most examples of α-tetragonal boron42 are in fact boron-rich carbide or nitrides.4344

β-rhombohedral boron

β-rhombohedral boron has a unit cell containing 105–108 (ideally exactly 105) atoms. Most atoms form B12 discrete icosahedra; a few form partially interpenetrating icosahedra, and there are two deltahedral B10 units, and a single central B atom.45 For a long time, it was unclear whether the α or β phase is most stable at ambient conditions; however, gradually a consensus was reached that the β phase is the most thermodynamically stable allotrope. It exhibits a Mohs hardness of 9.5, and is one of the hardest pure elements, only surpassed by carbon (as diamond).464748495051

β-tetragonal boron

The β phase was produced in 1960 by hydrogen reduction of BBr3 on hot tungsten, rhenium or tantalum filaments at temperatures 1270–1550 °C (i.e. chemical vapor deposition).52 Further studies have reproduced the synthesis and confirmed the absence of impurities in this phase.53545556

γ-boron

The γ-phase can be described as a NaCl-type arrangement of two types of clusters, B12 icosahedra and B2 pairs. It can be produced by compressing other boron phases to 12–20 GPa and heating to 1500–1800 °C, and remains stable at ambient conditions.5758 There is evidence of significant charge transfer from B2 pairs to the B12 icosahedra in this structure;59 in particular, lattice dynamics suggests the presence of significant long-range electrostatic interactions.

This phase was reported by Wentorf in 1965;6061 however, neither structure nor chemical composition were established. The structure was solved using ab initio crystal structure prediction calculations62 and confirmed using single crystal X-ray diffraction.63

Cubic boron

Sullenger et al. (1969)64 and McConville et al. (1976)65 reported a cubic allotrope of boron, obtained in argon plasma experiments, with a unit cell of 1705±3 atoms and a density of 2.367 g/cm3. While this allotrope is occasionally mentioned in the literature,66 no subsequent work appears to have been published either confirming or discrediting its existence. Donohue (1982) commented67 that the number of atoms in the unit cell did not appear to be icosahedrally related (the icosahedron being a motif common to boron structures).

High-pressure superconducting phase

Compressing boron above 160 GPa produces a boron phase with an as yet unknown structure. Contrary to other phases, which are semiconductors, this phase is a metal and becomes a superconductor with a critical temperature increasing from 6 K at 160 GPa to 11 K at 250 GPa.68 This structural transformation occurs at pressures at which theory predicts the icosahedra will dissociate.69 Speculation as to the structure of this phase has included face-centred cubic (analogous to Al); α-Ga, and body-centred tetragonal (analogous to In).70 It has also been suggested that the nonmetal-metal transition is simply the result of a band gap closure, as occurs with iodine, rather than a structural transition.71

Borophene

Main article: Borophene

There exist several two-dimensional forms of boron (together called borophenes), and even more are predicted theoretically.72

Borospherene

Main article: Borospherene

The discovery of the quasispherical allotropic molecule borospherene (B40) was announced in July 2014.73

Amorphous boron

Amorphous boron contains B12 regular icosahedra that are randomly bonded to each other without long range order.74 Pure amorphous boron can be produced by thermal decomposition of diborane at temperatures below 1000 °C. Annealing at 1000 °C converts amorphous boron to β-rhombohedral boron.75 Amorphous boron nanowires (30–60 nm thick)76 or fibers77 can be produced by magnetron sputtering and laser-assisted chemical vapor deposition, respectively; and they also convert to β-rhombohedral boron nanowires upon annealing at 1000 °C.78

Notes

Bibliography

  • Media related to Allotropes of boron at Wikimedia Commons

References

  1. Wiberg 2001, p. 930. - Wiberg, N. (2001). Inorganic chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.

  2. Housecroft & Sharpe 2008, p. 331. - Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic chemistry (3rd ed.). Harlow: Pearson Education. ISBN 978-0-13-175553-6.

  3. Donohue 1982, p. 48. - Donohue, J. (1982). The structures of the elements. Malabar, Florida: Robert E. Krieger. ISBN 0-89874-230-7.

  4. Housecroft & Sharpe 2008, p. 331. - Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic chemistry (3rd ed.). Harlow: Pearson Education. ISBN 978-0-13-175553-6.

  5. Lundström, T. (2009). "The solubility in the various modifications of boron". In Zuckerman, J. J.; Hagen, A. P. (eds.). Inorganic reactions and methods. Vol. 13: The formation of bonds to group-I, -II, and -IIIB elements. New York: John Wiley & Sons. pp. 196–97. ISBN 978-0-470-14549-4. 978-0-470-14549-4

  6. Oganov et al. 2009, p. 863. - Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb 2009). "Ionic high-pressure form of elemental boron". Nature. 457 (7027): 863–868. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. S2CID 4412568. https://arxiv.org/abs/0911.3192

  7. Vickers hardness comparable to that of cubic boron nitride /wiki/Vickers_hardness

  8. Lide, D. R., ed. (2003). "Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, and critical temperatures of the elements". CRC Handbook of Chemistry and Physics, 84th Edition. Boca Raton, Florida: CRC Press.

  9. Stern, D. R.; Lynds, Lahmer (1958). "High-Purity Crystalline Boron". Journal of the Electrochemical Society. 105 (11): 676. doi:10.1149/1.2428689. https://doi.org/10.1149%2F1.2428689

  10. Laubengayer, A. W.; Hurd, D. T.; Newkirk, A. E.; Hoard, J. L. (1943). "Boron. I. Preparation and properties of pure crystalline boron". Journal of the American Chemical Society. 65 (10): 1924. doi:10.1021/ja01250a036. /wiki/Doi_(identifier)

  11. Berger, L. I. (1996). Semiconductor materials. CRC Press. pp. 37–43. ISBN 0-8493-8912-7. 0-8493-8912-7

  12. Will & Kiefer 2001. - Will, G.; Kiefer, B. (2001). "Electron deformation density in rhombohedral α-boron". Zeitschrift für anorganische und allgemeine Chemie. 627 (9): 2100‒104. doi:10.1002/1521-3749(200109)627:9<2100::AID-ZAAC2100>3.0.CO;2-G. https://doi.org/10.1002%2F1521-3749%28200109%29627%3A9%3C2100%3A%3AAID-ZAAC2100%3E3.0.CO%3B2-G

  13. Oganov et al. 2009. - Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb 2009). "Ionic high-pressure form of elemental boron". Nature. 457 (7027): 863–868. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. S2CID 4412568. https://arxiv.org/abs/0911.3192

  14. Wiberg 2001, p. 930. - Wiberg, N. (2001). Inorganic chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.

  15. Amberger 1981, p. 60. - Amberger, E. (1981). "Elemental boron". In Buschbeck, K. C. (ed.). Gmelin handbook of inorganic and organometallic chemistry: B Boron, Supplement 2 (8th ed.). Berlin: Springer-Verlag. pp. 1–112. ISBN 3-540-93448-0.

  16. Solozhenko, V. L.; Kurakevych, O. O.; Oganov, A. R. (2008). "On the hardness of a new boron phase, orthorhombic γ-B28". Journal of Superhard Materials. 30 (6): 428–429. arXiv:1101.2959. doi:10.3103/S1063457608060117. S2CID 15066841. /wiki/ArXiv_(identifier)

  17. Zarechnaya et al. 2009. - Zarechnaya, E. Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; et al. (2009). "Superhard semiconducting optically transparent high pressure phase of boron". Physical Review Letters. 102 (18): 185501‒4. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885. S2CID 14942345. https://ui.adsabs.harvard.edu/abs/2009PhRvL.102r5501Z

  18. Zarechnaya et al. 2009. - Zarechnaya, E. Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; et al. (2009). "Superhard semiconducting optically transparent high pressure phase of boron". Physical Review Letters. 102 (18): 185501‒4. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885. S2CID 14942345. https://ui.adsabs.harvard.edu/abs/2009PhRvL.102r5501Z

  19. Nelmes et al. 1993. - Nelmes, R. J.; Loveday, J. S.; Allan, D. R.; Besson, J. M.; Hamel, G.; Grima, P.; Hull, S. (1993). "Neutron- and x-ray-diffraction measurements of the bulk modulus of boron". Physical Review B. 47 (13): 7668–7673. Bibcode:1993PhRvB..47.7668N. doi:10.1103/PhysRevB.47.7668. PMID 10004773. https://ui.adsabs.harvard.edu/abs/1993PhRvB..47.7668N

  20. Madelung 1983, p. 10. - Madelung, O. (1983). Landolt-Bornstein numerical data and functional relationships in science and technology. New series. Group III. Volume 17: Semiconductors. Subvolume e: Physics of non-tetrahedrally bonded elements and binary compounds I. Springer-Verlag: New York. ISBN 0-387-11780-6.

  21. Uemura, Naoki; Shirai, Koun; Eckert, Hagen; Kunstmann, Jens (2016). "Structure, nonstoichiometry, and geometrical frustration of α-tetragonal boron". Physical Review B. 93: 104101. arXiv:1602.01796. doi:10.1103/PhysRevB.93.104101. /wiki/ArXiv_(identifier)

  22. Madelung 1983, p. 11. - Madelung, O. (1983). Landolt-Bornstein numerical data and functional relationships in science and technology. New series. Group III. Volume 17: Semiconductors. Subvolume e: Physics of non-tetrahedrally bonded elements and binary compounds I. Springer-Verlag: New York. ISBN 0-387-11780-6.

  23. Hayami, Wataru (2015). "Structural stability and electronic properties of β-tetragonal boron: A first-principles study". Journal of Solid State Chemistry. 221: 378–383. doi:10.1016/j.jssc.2014.10.012. /wiki/Doi_(identifier)

  24. Zarechnaya et al. 2009. - Zarechnaya, E. Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; et al. (2009). "Superhard semiconducting optically transparent high pressure phase of boron". Physical Review Letters. 102 (18): 185501‒4. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885. S2CID 14942345. https://ui.adsabs.harvard.edu/abs/2009PhRvL.102r5501Z

  25. Madelung 1983, p. 12. - Madelung, O. (1983). Landolt-Bornstein numerical data and functional relationships in science and technology. New series. Group III. Volume 17: Semiconductors. Subvolume e: Physics of non-tetrahedrally bonded elements and binary compounds I. Springer-Verlag: New York. ISBN 0-387-11780-6.

  26. Donohue 1982, p. 57. - Donohue, J. (1982). The structures of the elements. Malabar, Florida: Robert E. Krieger. ISBN 0-89874-230-7.

  27. Hoard, J. L.; Hughes, R. E. (1967). "Chapter 2: Elementary boron and compounds of high boron content: Structure, properties and polymorphism". In Muetterties, E. L. (ed.). The chemistry of boron and its compounds. New York: John Wiley & Sons. pp. 25–154 (29, 82).

  28. Wiberg 2001, p. 930. - Wiberg, N. (2001). Inorganic chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.

  29. Housecroft & Sharpe 2008, p. 331. - Housecroft, C. E.; Sharpe, A. G. (2008). Inorganic chemistry (3rd ed.). Harlow: Pearson Education. ISBN 978-0-13-175553-6.

  30. Black when viewed by reflected light; red by transmitted light

  31. Donohue 1982, p. 78. - Donohue, J. (1982). The structures of the elements. Malabar, Florida: Robert E. Krieger. ISBN 0-89874-230-7.

  32. High purity amorphous boron powder is black whereas impure samples have a brown appearance: Lidin R. A. (1996). Inorganic substances handbook. New York: Begell House. p. 22; Zenkov, V. S. (2006). "Adsorption-chemical activity of finely-dispersed amorphous powders of brown and black boron used in synthesizing metal borides". Powder Metallurgy and Metal Ceramics. 45 (5–6): 279–282 (279). doi:10.1007/s11106-006-0076-z. S2CID 97019942.; Loryan, V. E.; Borovinskaya, I. P.; Merzhanov, A. G. (2011). "On combustion of boron in nitrogen gas". International Journal of Self-Propagating High-Temperature Synthesis. 20 (3): 153–155. doi:10.3103/S106138621103006X. S2CID 97864958.; Kanel, G. I.; Utkin, A. V.; Razorenov, S. V. (2009). "Rate of the energy release in high explosives containing nano-size boron particles" (PDF). Central European Journal of Energetic Materials. 6 (1): 15–30 (18). /wiki/Doi_(identifier)

  33. Oganov et al. 2009, pp. 863–64. - Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb 2009). "Ionic high-pressure form of elemental boron". Nature. 457 (7027): 863–868. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. S2CID 4412568. https://arxiv.org/abs/0911.3192

  34. Wiberg 2001, p. 930. - Wiberg, N. (2001). Inorganic chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.

  35. Donohue 1982, pp. 48, 57, 61. - Donohue, J. (1982). The structures of the elements. Malabar, Florida: Robert E. Krieger. ISBN 0-89874-230-7.

  36. 1943 was when the supposed structure was first reported; 1973 was when it was first reported that pure α-tetragonal boron can only be synthesized as thin layers deposited on an underlying substrate of isotropic boron carbide or nitride: Kunzmann, P. M. (1973). Structural studies on the crystal chemistry of icosahedral boron framework structure derivatives. PhD thesis. Cornell University; Amberger, E. (1981). "Elemental boron". In Buschbeck, K. C.. Gmelin handbook of inorganic and organometallic chemistry: B Boron, Supplement 2 (8th ed.). Berlin: Springer-Verlag. pp. 1–112 (60–61). ISBN 3-540-93448-0. /wiki/ISBN_(identifier)

  37. γ-Boron was previously obtained in 1965, but its structure was not determined (see below).

  38. Weintraub, E. (1911). "On the properties and preparation of the element boron". The Journal of Industrial and Engineering Chemistry. 3 (5): 299–301 (299). doi:10.1021/ie50029a007. Both in appearance and in its curved conchoidal fracture the lump and the broken-up pieces most nearly resemble black diamond ... with an amorphous structure. https://zenodo.org/record/1428712

  39. Laubengayer, A. W.; Brandaur, A. E.; Brandaur, R. L. (1942). "Progress in the preparation and determination of the properties of boron". Journal of Chemical Education. 19 (8): 382–85. Bibcode:1942JChEd..19..382L. doi:10.1021/ed019p382. Boron ... shows a considerable tendency to assume the vitreous condition ... Volatile compounds of boron such as the halides and the hydrides have been decomposed by passing their vapors through an arc or by bringing them in contact with a hot surface or filament. Boron of high purity is reported procurable by this method, but it is either a very fine powder or of vitreous structure. /wiki/Bibcode_(identifier)

  40. Nelmes et al. 1993. - Nelmes, R. J.; Loveday, J. S.; Allan, D. R.; Besson, J. M.; Hamel, G.; Grima, P.; Hull, S. (1993). "Neutron- and x-ray-diffraction measurements of the bulk modulus of boron". Physical Review B. 47 (13): 7668–7673. Bibcode:1993PhRvB..47.7668N. doi:10.1103/PhysRevB.47.7668. PMID 10004773. https://ui.adsabs.harvard.edu/abs/1993PhRvB..47.7668N

  41. Wiberg 2001, p. 930. - Wiberg, N. (2001). Inorganic chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.

  42. Hoard, J. L.; Hughes, R. E.; Sands, D. E. (1958). "The Structure of Tetragonal Boron". Journal of the American Chemical Society. 80 (17): 4507. doi:10.1021/ja01550a019. /wiki/Doi_(identifier)

  43. Hoard et al. 1970. - Hoard, J. L.; Sullenger, D. B.; Kennard, C. H. L.; Hughes, R. E. (January 1970). "The structure analysis of β-rhombohedral boron". Journal of Solid State Chemistry. 1 (2): 268–277. Bibcode:1970JSSCh...1..268H. doi:10.1016/0022-4596(70)90022-8. https://ui.adsabs.harvard.edu/abs/1970JSSCh...1..268H

  44. Amberger 1981, p. 61. - Amberger, E. (1981). "Elemental boron". In Buschbeck, K. C. (ed.). Gmelin handbook of inorganic and organometallic chemistry: B Boron, Supplement 2 (8th ed.). Berlin: Springer-Verlag. pp. 1–112. ISBN 3-540-93448-0.

  45. Wiberg 2001, p. 931. - Wiberg, N. (2001). Inorganic chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.

  46. Oganov et al. 2009. - Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb 2009). "Ionic high-pressure form of elemental boron". Nature. 457 (7027): 863–868. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. S2CID 4412568. https://arxiv.org/abs/0911.3192

  47. Jemmis, E.D.; Balakrishnarajan, M.M.; Pancharatna, P.D. (2001). "A Unifying Electron-Counting Rule for Macropolyhedral Boranes, Metallaboranes, and Metallocenes". J. Am. Chem. Soc. 123 (18): 4313–4323. doi:10.1021/ja003233z. PMID 11457198. /wiki/Doi_(identifier)

  48. Prasad, D.L.V.K.; Balakrishnarajan, M.M.; Jemmis, E.D. (2005). "Electronic structure and bonding of β-rhombohedral boron using cluster fragment approach". Phys. Rev. B. 72 (19): 195102. Bibcode:2005PhRvB..72s5102P. doi:10.1103/PhysRevB.72.195102. /wiki/Bibcode_(identifier)

  49. van Setten M.J.; Uijttewaal M.A.; de Wijs G.A.; de Groot R.A. (2007). "Thermodynamic stability of boron: The role of defects and zero point motion" (PDF). J. Am. Chem. Soc. 129 (9): 2458–2465. doi:10.1021/ja0631246. PMID 17295480. Archived from the original (PDF) on 2021-04-15. Retrieved 2019-12-01. https://web.archive.org/web/20210415015024/https://pure.rug.nl/ws/files/2796591/2007JAmChemSocvSetten.pdf

  50. Widom M.; Mihalkovic M. (2008). "Symmetry-broken crystal structure of elemental boron at low temperature". Phys. Rev. B. 77 (6): 064113. arXiv:0712.0530. Bibcode:2008PhRvB..77f4113W. doi:10.1103/PhysRevB.77.064113. S2CID 27321818. /wiki/ArXiv_(identifier)

  51. Kirk-Othmer, ed. (2001-01-26). Kirk-Othmer Encyclopedia of Chemical Technology (1 ed.). Wiley. doi:10.1002/0471238961.0215181510011419.a01.pub2. ISBN 978-0-471-48494-3. 978-0-471-48494-3

  52. Talley, La Placa & Post 1960. - Talley, C. P.; La Placa, S.; Post, B. (1960). "A new polymorph of boron". Acta Crystallographica. 13 (3): 271‒2. doi:10.1107/S0365110X60000613. https://doi.org/10.1107%2FS0365110X60000613

  53. Sullenger et al. 1969. - Sullenger, D. B.; Phipps, K. D.; Seabaugh, P. W.; Hudgens, C. R.; Sands, D. E.; Cantrell, J. S. (1969). "Boron modifications produced in an induction-coupled argon plasma". Science. 163 (3870): 935‒937. Bibcode:1969Sci...163..935S. doi:10.1126/science.163.3870.935. PMID 17737317. S2CID 25956278. https://ui.adsabs.harvard.edu/abs/1969Sci...163..935S

  54. Amberger, E.; Ploog, K. (1971). "Bildung der gitter des reinen bors". J. Less-Common Met. 23: 21. doi:10.1016/0022-5088(71)90004-X. /wiki/Doi_(identifier)

  55. Ploog, K.; Amberger, E. (1971). "Kohlenstoff-induzierte gitter beim bor: I-tetragonales (B12)4B2C und (B12)4B2C2". J. Less-Common Met. 23: 33. doi:10.1016/0022-5088(71)90005-1. /wiki/Doi_(identifier)

  56. Vlasse, M.; Naslain, R.; Kasper, J. S.; Ploog, K. (1979). "Crystal structure of tetragonal boron related to α-AlB12". Journal of Solid State Chemistry. 28 (3): 289. Bibcode:1979JSSCh..28..289V. doi:10.1016/0022-4596(79)90080-X. /wiki/Bibcode_(identifier)

  57. Oganov et al. 2009. - Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb 2009). "Ionic high-pressure form of elemental boron". Nature. 457 (7027): 863–868. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. S2CID 4412568. https://arxiv.org/abs/0911.3192

  58. Zarechnaya et al. 2009. - Zarechnaya, E. Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; et al. (2009). "Superhard semiconducting optically transparent high pressure phase of boron". Physical Review Letters. 102 (18): 185501‒4. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885. S2CID 14942345. https://ui.adsabs.harvard.edu/abs/2009PhRvL.102r5501Z

  59. Oganov et al. 2009. - Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb 2009). "Ionic high-pressure form of elemental boron". Nature. 457 (7027): 863–868. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. S2CID 4412568. https://arxiv.org/abs/0911.3192

  60. Wentorf 1965. - Wentorf, R. H. (1965). "Boron: Another form". Science. 147 (3653): 49–50. Bibcode:1965Sci...147...49W. doi:10.1126/science.147.3653.49. PMID 17799779. S2CID 20539654. https://ui.adsabs.harvard.edu/abs/1965Sci...147...49W

  61. Zarechnaya, E. Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Miyajima, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V. (2008). "Synthesis of an orthorhombic high pressure boron phase". Science and Technology of Advanced Materials. 9 (4): 044209‒12. Bibcode:2008STAdM...9d4209Z. doi:10.1088/1468-6996/9/4/044209. PMC 5099640. PMID 27878026. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099640

  62. Oganov et al. 2009. - Oganov, A. R.; Chen, J.; Ma, Y.; Glass, C. W.; Yu, Z.; Kurakevych, O. O.; Solozhenko, V. L. (12 Feb 2009). "Ionic high-pressure form of elemental boron". Nature. 457 (7027): 863–868. arXiv:0911.3192. Bibcode:2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. S2CID 4412568. https://arxiv.org/abs/0911.3192

  63. Zarechnaya et al. 2009. - Zarechnaya, E. Y.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; et al. (2009). "Superhard semiconducting optically transparent high pressure phase of boron". Physical Review Letters. 102 (18): 185501‒4. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885. S2CID 14942345. https://ui.adsabs.harvard.edu/abs/2009PhRvL.102r5501Z

  64. Sullenger et al. 1969. - Sullenger, D. B.; Phipps, K. D.; Seabaugh, P. W.; Hudgens, C. R.; Sands, D. E.; Cantrell, J. S. (1969). "Boron modifications produced in an induction-coupled argon plasma". Science. 163 (3870): 935‒937. Bibcode:1969Sci...163..935S. doi:10.1126/science.163.3870.935. PMID 17737317. S2CID 25956278. https://ui.adsabs.harvard.edu/abs/1969Sci...163..935S

  65. McConville, G. T.; Sullenger, D. B.; Zielinski, R. E.; Gubser, D. U.; Sands, D. E.; Cantrell, J. S. (1976). "Some physical properties of cubic boron". Physics Letters A. 58 (4): 257‒259. Bibcode:1976PhLA...58..257M. doi:10.1016/0375-9601(76)90091-8. /wiki/Bibcode_(identifier)

  66. Amberger 1981, pp. 21, 27, 74. - Amberger, E. (1981). "Elemental boron". In Buschbeck, K. C. (ed.). Gmelin handbook of inorganic and organometallic chemistry: B Boron, Supplement 2 (8th ed.). Berlin: Springer-Verlag. pp. 1–112. ISBN 3-540-93448-0.

  67. Donohue 1982, p. 80. - Donohue, J. (1982). The structures of the elements. Malabar, Florida: Robert E. Krieger. ISBN 0-89874-230-7.

  68. Eremets, M. I.; et al. (2001). "Superconductivity in Boron". Science. 293 (5528): 272–4. Bibcode:2001Sci...293..272E. doi:10.1126/science.1062286. PMID 11452118. S2CID 23001035. /wiki/Mikhail_Eremets

  69. Mailhiot, C.; Grant, J. B.; McMahan, A. K. (1990). "High-pressure metallic phases of boron". Phys. Rev. B. 42 (14): 9033–9039. Bibcode:1990PhRvB..42.9033M. doi:10.1103/PhysRevB.42.9033. PMID 9995117. https://zenodo.org/record/1233721

  70. Polian, A.; Ovsyannikov, S. V.; Gauthier, M.; Munsch, M.; Chervin, J-C; Lemarchand, G. (2010). "Boron and boron-rich solids at high pressures". In Boldyreva, E; Dera, P. (eds.). High-pressure crystallography: From fundamental phenomena to technological applications: Proceedings of the NATO Advanced Study Institute on High-Pressure Crystallography: Advanced Armor Materials and Protection from Explosives, Erice, Italy, 4‒14 June 2009. Dordrecht: Springer Science+Business Media. pp. 241‒250 (242). ISBN 978-90-481-9257-1. 978-90-481-9257-1

  71. Zhao, J.; Lu, J. P. (2002). "Pressure-induced metallization in solid boron". Physical Review B. 66 (9): 092101 to 092105. arXiv:cond-mat/0109550. Bibcode:2002PhRvB..66i2101Z. doi:10.1103/PhysRevB.66.092101. S2CID 119426107. /wiki/ArXiv_(identifier)

  72. Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U. (2015). "Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs". Science. 350 (6267): 1513–1516. Bibcode:2015Sci...350.1513M. doi:10.1126/science.aad1080. PMC 4922135. PMID 26680195. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922135

  73. Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li; Chen, Qiang; Bai, Hui; Hu, Han-Shi; Piazza, Zachary A.; Tian, Wen-Juan; Lu, Hai-Gang; Wu, Yan-Bo; Mu, Yue-Wen; Wei, Guang-Feng; Liu, Zhi-Pan; Li, Jun; Li, Si-Dian; Wang, Lai-Sheng (2014-07-13). "Observation of an all-boron fullerene". Nature Chemistry. advance online publication (8): 727–731. Bibcode:2014NatCh...6..727Z. doi:10.1038/nchem.1999. ISSN 1755-4349. PMID 25054944. /wiki/Bibcode_(identifier)

  74. Delaplane, R. G.; Dahlborg, U.; Howells, W. S.; Lundström, T. (1988). "A neutron diffraction study of amorphous boron using a pulsed source". Journal of Non-Crystalline Solids. 106 (1–3): 66–69. Bibcode:1988JNCS..106...66D. doi:10.1016/0022-3093(88)90229-3. /wiki/Bibcode_(identifier)

  75. Gillespie, J. S. Jr. (1966). "Crystallization of Massive Amorphous Boron". J. Am. Chem. Soc. 88 (11): 2423. doi:10.1021/ja00963a011. /wiki/Doi_(identifier)

  76. Wang & Duan 2003. - Wang, Y. Q.; Duan, X. F. (2003). "Crystalline boron nanowires". Applied Physics Letters. 82 (2): 272. Bibcode:2003ApPhL..82..272W. doi:10.1063/1.1536269. S2CID 122278136. https://ui.adsabs.harvard.edu/abs/2003ApPhL..82..272W

  77. Johansson, S.; et al. (1992). "Microfabrication of three-dimensional boron structures by laser chemical processing". J. Appl. Phys. 72 (12): 5956. Bibcode:1992JAP....72.5956J. doi:10.1063/1.351904. /wiki/Bibcode_(identifier)

  78. Wang & Duan 2003. - Wang, Y. Q.; Duan, X. F. (2003). "Crystalline boron nanowires". Applied Physics Letters. 82 (2): 272. Bibcode:2003ApPhL..82..272W. doi:10.1063/1.1536269. S2CID 122278136. https://ui.adsabs.harvard.edu/abs/2003ApPhL..82..272W