Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Alpha hydroxycarboxylic acid
Class of chemical compounds

Alpha hydroxy carboxylic acids (AHAs) are a group of carboxylic acids characterized by a hydroxy group positioned one carbon away from the acid group, distinguishing them from beta hydroxy acids whose functional groups are separated by two carbons. Common AHAs include glycolic acid, lactic acid, mandelic acid, and citric acid. These acids are stronger acids than non-alpha hydroxy acids, partly due to internal hydrogen bonding. Industrially, AHAs are used as animal feed additives and polymer precursors, while in cosmetics, their chemical exfoliation properties make them valuable ingredients for skin care products.

We don't have any images related to Alpha hydroxycarboxylic acid yet.
We don't have any YouTube videos related to Alpha hydroxycarboxylic acid yet.
We don't have any PDF documents related to Alpha hydroxycarboxylic acid yet.
We don't have any Books related to Alpha hydroxycarboxylic acid yet.
We don't have any archived web articles related to Alpha hydroxycarboxylic acid yet.

Occurrence

Aldonic acids, a type of sugar acid, are a class of naturally occurring hydroxycarboxylic acids. They have the general chemical formula, HO2C(CHOH)nCH2OH. Gluconic acid, a particularly common aldonic acid, the oxidized derivative of glucose.

2-Hydroxy-4-(methylthio)butyric acid is an intermediate in the biosynthesis of 3-dimethylsulfoniopropionate, precursor to natural dimethyl sulfide.10

Synthesis

One common synthesis route involves the hydrolysis of α-halocarboxylic acids, readily available precursors, to produce 2-hydroxycarboxylic acids. For instance, the production of glycolic acid typically follows this method, utilizing a base-induced reaction, followed by acid workup. Similarly, unsaturated acids and fumarate and maleate esters undergo hydration to yield malic acid derivatives from esters, and 3-hydroxypropionic acid from acrylic acid.11

R−CH(Cl)CO2H + H2O → R−CH(OH)CO2H + HCl

Another synthetic pathway for α-hydroxy acids involves the addition of hydrogen cyanide to ketones or aldehydes, followed by the acidic hydrolysis of the cyanohydrin intermediate.12

R−CHO + HCN → R−CH(OH)CN R−CH(OH)CN + 2H2O → R−CH(OH)CO2H + NH3

Furthermore, specialized synthetic routes include the reaction of dilithiated carboxylic acids with oxygen, followed by aqueous workup.13

R−CHLiCO2Li + O2 → R−CH(O2Li)CO2Li R−CH(O2Li)CO2Li + H+ → R−CH(OH)CO2H + 2Li+ + ...

Additionally, α-keto aldehydes can be transformed into α-hydroxy acids through the Cannizzaro reaction.14

R−C(O)CHO + 2OH− → R−CH(OH)CO−2 + H2O

Uses

The synthesis and utilization of polymers based on lactic acid, including polylactic acid (PLA) and its cyclic ester lactide, are used in the creation of biodegradable materials such as medical implants, drug delivery systems, and sutures.15 Similarly, glycolic acid serves as a foundation for the development of poly(glycolic acid), spelled polyglycolide (PGA), a polymer distinguished by its high crystallinity, thermal stability, and mechanical strength, despite its synthetic origins.16 Both PLA and PGA are fully biodegradable.17

Furthermore, mandelic acid, another alpha hydroxy acid, when combined with sulfuric acid produces "SAMMA", obtained via condensation with sulfuric acid.18 Early laboratory work performed in 2002 and 2007 against notable pathogens such as the human immunodeficiency virus (HIV) and the herpes simplex virus (HSV) suggest SAMMA warrants further investigation as a topical microbicide to prevent vaginal sexually-transmitted infection transmission.1920

2-Hydroxy-4-(methylthio)butyric acid, alpha hydroxy carboxylic acid, is used commercially in a racemic mixture to substitute for methionine in animal feed.21

α-Hydroxy acids, such as glycolic acid, lactic acid, citric acid, and mandelic acid, serve as precursors in organic synthesis, playing a role in the industrial-scale preparation of various compounds.2223 These acids are used when synthesizing aldehydes through oxidative cleavage.2425 α-Hydroxy acids are particularly prone to acid-catalyzed decarbonylation, yielding carbon monoxide, a ketone or aldehyde, and water as by-products.26

Safety

Alpha hydroxy acids are generally safe when used on the skin as a cosmetic agent using the recommended dosage. The most common side-effects are mild skin irritations, redness and flaking.27 The United States Food and Drug Administration (FDA) and Cosmetic Ingredient Review expert panels both suggest that alpha hydroxy acids are safe to use as long as they are sold at low concentrations, pH levels greater than 3.5, and include thorough safety instructions.28

The FDA has warned consumers that care should be taken when using alpha hydroxy acids after an industry-sponsored study found that they can increase the likelihood of sunburns.29 This effect is reversible after stopping the use of alpha hydroxy acids. Other sources suggest that glycolic acid, in particular, may protect from sun damage.30

See also

Further reading

  • Atzori L, Brundu MA, Orru A, Biggio P (March 1999). "Glycolic acid peeling in the treatment of acne". Journal of the European Academy of Dermatology and Venereology. 12 (2): 119–22. doi:10.1111/j.1468-3083.1999.tb01000.x. PMID 10343939. S2CID 9721678.
  • "Alpha Hydroxy Acids for Skin Care". Cosmetic Dermatology, Supplement: 1–6. October 1994.
  • Kalla G, Garg A, Kachhawa D (2001). "Chemical peeling--glycolic acid versus trichloroacetic acid in melasma". Indian Journal of Dermatology, Venereology and Leprology. 67 (2): 82–4. PMID 17664715.
  • Kempers S, Katz HI, Wildnauer R, Green B (June 1998). "An evaluation of the effect of an alpha hydroxy acid-blend skin cream in the cosmetic improvement of symptoms of moderate to severe xerosis, epidermolytic hyperkeratosis, and ichthyosis". Cutis. 61 (6): 347–50. PMID 9640557.

References

  1. Miltenberger, Karlheinz (2000). "Hydroxycarboxylic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_507. ISBN 3527306730. 3527306730

  2. Dawson RM, et al. (1959). Data for Biochemical Research. Oxford: Clarendon Press.

  3. Handbook of Chemistry and Physics, CRC Press, 58th edition, page D147 (1977)

  4. The strength of the hydrogen bonding is refelected also in the Proton nuclear magnetic resonance-spectrum of these compounds: instead of giving rise to a contribution to the broad signal of rapidly exchanged protons (between COOH, OH, NH, etc) in 2-phenyl-2-hydroxyacetic acid (mandelic acid) the proton on the alpha carbon and the proton trapped in the internal hydrogen bridge show a nice pair of doublets instead a singlet (H on alpha-C) and the formentioned broad signal of exchangable protons. So on the NMR-time scale the exchange equilibrium for the alpha-hydroxy group is frozen. /wiki/Proton_nuclear_magnetic_resonance

  5. Casalini, Tommaso; Rossi, Filippo; Castrovinci, Andrea; Perale, Giuseppe (2019). "A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications". Frontiers in Bioengineering and Biotechnology. 7: 259. doi:10.3389/fbioe.2019.00259. ISSN 2296-4185. PMC 6797553. PMID 31681741. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797553

  6. Storti, G.; Lattuada, M. (2017-01-01). Perale, Giuseppe; Hilborn, Jöns (eds.). "8 - Synthesis of bioresorbable polymers for medical applications". Bioresorbable Polymers for Biomedical Applications. Woodhead Publishing: 153–179. doi:10.1016/b978-0-08-100262-9.00008-2. ISBN 978-0-08-100262-9. Retrieved 2023-04-01. 978-0-08-100262-9

  7. Samantaray, Paresh Kumar; Little, Alastair; Haddleton, David M.; McNally, Tony; Tan, Bowen; Sun, Zhaoyang; Huang, Weijie; Ji, Yang; Wan, Chaoying (2020). "Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications". Green Chemistry. 22 (13): 4055–4081. doi:10.1039/D0GC01394C. ISSN 1463-9262. S2CID 219749282. http://xlink.rsc.org/?DOI=D0GC01394C

  8. Herold, B. C.; Scordi-Bello, I.; Cheshenko, N.; Marcellino, D.; Dzuzelewski, M.; Francois, F.; Morin, R.; Casullo, V. Mas; Anderson, R. A.; Chany, C.; Waller, D. P.; Zaneveld, L. J. D.; Klotman, M. E. (2002-11-15). "Mandelic Acid Condensation Polymer: Novel Candidate Microbicide for Prevention of Human Immunodeficiency Virus and Herpes Simplex Virus Entry". Journal of Virology. 76 (22): 11236–11244. doi:10.1128/JVI.76.22.11236-11244.2002. ISSN 0022-538X. PMC 136750. PMID 12388683. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC136750

  9. Nutrition, Center for Food Safety and Applied (2022-11-22). "Alpha Hydroxy Acids". FDA. https://www.fda.gov/cosmetics/cosmetic-ingredients/alpha-hydroxy-acids

  10. Curson, Andrew R. J.; Liu, Ji; Bermejo Martínez, Ana; Green, Robert T.; Chan, Yohan; Carrión, Ornella; Williams, Beth T.; Zhang, Sheng-Hui; Yang, Gui-Peng; Bulman Page, Philip C.; Zhang, Xiao-Hua; Todd, Jonathan D. (2017). "Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process" (PDF). Nature Microbiology. 2 (5): 17009. doi:10.1038/nmicrobiol.2017.9. PMID 28191900. S2CID 21460292. https://ueaeprints.uea.ac.uk/id/eprint/62649/1/Todd_Figure_1.pdf

  11. Miltenberger K (2000). "Hydroxycarboxylic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a13_507. ISBN 978-3527306732. 978-3527306732

  12. Vollhardt KP, Schore NE (2018-01-29). Organic chemistry: structure and function (8th ed.). New York: W. H. Freeman, Macmillan Learning. ISBN 9781319079451. OCLC 1007924903. 9781319079451

  13. Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, p. 813, ISBN 978-0-471-72091-1 978-0-471-72091-1

  14. Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, p. 1864, ISBN 978-0-471-72091-1 978-0-471-72091-1

  15. Storti, G.; Lattuada, M. (2017-01-01). Perale, Giuseppe; Hilborn, Jöns (eds.). "8 - Synthesis of bioresorbable polymers for medical applications". Bioresorbable Polymers for Biomedical Applications. Woodhead Publishing: 153–179. doi:10.1016/b978-0-08-100262-9.00008-2. ISBN 978-0-08-100262-9. Retrieved 2023-04-01. 978-0-08-100262-9

  16. Casalini, Tommaso; Rossi, Filippo; Castrovinci, Andrea; Perale, Giuseppe (2019). "A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications". Frontiers in Bioengineering and Biotechnology. 7: 259. doi:10.3389/fbioe.2019.00259. ISSN 2296-4185. PMC 6797553. PMID 31681741. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797553

  17. Samantaray, Paresh Kumar; Little, Alastair; Haddleton, David M.; McNally, Tony; Tan, Bowen; Sun, Zhaoyang; Huang, Weijie; Ji, Yang; Wan, Chaoying (2020). "Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications". Green Chemistry. 22 (13): 4055–4081. doi:10.1039/D0GC01394C. ISSN 1463-9262. S2CID 219749282. http://xlink.rsc.org/?DOI=D0GC01394C

  18. Herold, B. C.; Scordi-Bello, I.; Cheshenko, N.; Marcellino, D.; Dzuzelewski, M.; Francois, F.; Morin, R.; Casullo, V. Mas; Anderson, R. A.; Chany, C.; Waller, D. P.; Zaneveld, L. J. D.; Klotman, M. E. (2002-11-15). "Mandelic Acid Condensation Polymer: Novel Candidate Microbicide for Prevention of Human Immunodeficiency Virus and Herpes Simplex Virus Entry". Journal of Virology. 76 (22): 11236–11244. doi:10.1128/JVI.76.22.11236-11244.2002. ISSN 0022-538X. PMC 136750. PMID 12388683. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC136750

  19. Herold, B. C.; Scordi-Bello, I.; Cheshenko, N.; Marcellino, D.; Dzuzelewski, M.; Francois, F.; Morin, R.; Casullo, V. Mas; Anderson, R. A.; Chany, C.; Waller, D. P.; Zaneveld, L. J. D.; Klotman, M. E. (2002-11-15). "Mandelic Acid Condensation Polymer: Novel Candidate Microbicide for Prevention of Human Immunodeficiency Virus and Herpes Simplex Virus Entry". Journal of Virology. 76 (22): 11236–11244. doi:10.1128/JVI.76.22.11236-11244.2002. ISSN 0022-538X. PMC 136750. PMID 12388683. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC136750

  20. Chang, Theresa L.; Teleshova, Natalia; Rapista, Aprille; Paluch, Maciej; Anderson, Robert A.; Waller, Donald P.; Zaneveld, Lourens J.D.; Granelli-Piperno, Angela; Klotman, Mary E. (2007-10-02). "SAMMA, a mandelic acid condensation polymer, inhibits dendritic cell-mediated HIV transmission". FEBS Letters. 581 (24): 4596–4602. doi:10.1016/j.febslet.2007.08.048. ISSN 0014-5793. PMC 2018605. PMID 17825297. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2018605

  21. Lemme, A.; Hoehler, D.; Brennan, JJ; Mannion, PF (2002). "Relative effectiveness of methionine hydroxy analog compared to DL-methionine in broiler chickens". Poultry Science. 81 (6): 838–845. doi:10.1093/ps/81.6.838. PMID 12079051. https://doi.org/10.1093%2Fps%2F81.6.838

  22. Miltenberger K (2000). "Hydroxycarboxylic Acids, Aliphatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a13_507. ISBN 978-3527306732. 978-3527306732

  23. Ritzer E, Sundermann R (2000). "Hydroxycarboxylic Acids, Aromatic". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a13_519. ISBN 978-3527306732. 978-3527306732

  24. Ôeda H (1934). "Oxidation of some α-hydroxy-acids with lead tetraacetate". Bulletin of the Chemical Society of Japan. 9 (1): 8–14. doi:10.1246/bcsj.9.8. https://doi.org/10.1246%2Fbcsj.9.8

  25. Nwaukwa S, Keehn P (1982). "Oxidative cleavage of α-diols, α-diones, α-hydroxy-ketones and α-hydroxy- and α-keto acids with calcium hypochlorite [Ca(OCl)2]". Tetrahedron Letters. 23 (31): 3135–3138. doi:10.1016/S0040-4039(00)88578-0. /wiki/Doi_(identifier)

  26. Chandler NR (1993). Principles of organic synthesis. Coxon, J. M. (James Morriss), 1941- (3rd. ed.). London: Blackie Academic & Professional. ISBN 978-0751401264. OCLC 27813843. 978-0751401264

  27. Nutrition, Center for Food Safety and Applied (2022-11-22). "Alpha Hydroxy Acids". FDA. https://www.fda.gov/cosmetics/cosmetic-ingredients/alpha-hydroxy-acids

  28. Nutrition, Center for Food Safety and Applied (2022-11-22). "Alpha Hydroxy Acids". FDA. https://www.fda.gov/cosmetics/cosmetic-ingredients/alpha-hydroxy-acids

  29. Nutrition, Center for Food Safety and Applied (2022-11-22). "Alpha Hydroxy Acids". FDA. https://www.fda.gov/cosmetics/cosmetic-ingredients/alpha-hydroxy-acids

  30. Nutrition, Center for Food Safety and Applied (2022-11-22). "Alpha Hydroxy Acids". FDA. https://www.fda.gov/cosmetics/cosmetic-ingredients/alpha-hydroxy-acids