Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Anyonic Lie algebra
U(1) graded vector space L over C equipped with a bilinear operator

In mathematics, an anyonic Lie algebra is a U(1) graded vector space L {\displaystyle L} over C {\displaystyle \mathbb {C} } equipped with a bilinear operator [ ⋅ , ⋅ ] : L × L → L {\displaystyle [\cdot ,\cdot ]\colon L\times L\rightarrow L} and linear maps ε : L → C {\displaystyle \varepsilon \colon L\to \mathbb {C} } (some authors use | ⋅ | : L → C {\displaystyle |\cdot |\colon L\to \mathbb {C} } ) and Δ : L → L ⊗ L {\displaystyle \Delta \colon L\to L\otimes L} such that Δ X = X i ⊗ X i {\displaystyle \Delta X=X_{i}\otimes X^{i}} , satisfying following axioms:

  • ε ( [ X , Y ] ) = ε ( X ) ε ( Y ) {\displaystyle \varepsilon ([X,Y])=\varepsilon (X)\varepsilon (Y)}
  • [ X , Y ] i ⊗ [ X , Y ] i = [ X i , Y j ] ⊗ [ X i , Y j ] e 2 π i n ε ( X i ) ε ( Y j ) {\displaystyle [X,Y]_{i}\otimes [X,Y]^{i}=[X_{i},Y_{j}]\otimes [X^{i},Y^{j}]e^{{\frac {2\pi i}{n}}\varepsilon (X^{i})\varepsilon (Y_{j})}}
  • X i ⊗ [ X i , Y ] = X i ⊗ [ X i , Y ] e 2 π i n ε ( X i ) ( 2 ε ( Y ) + ε ( X i ) ) {\displaystyle X_{i}\otimes [X^{i},Y]=X^{i}\otimes [X_{i},Y]e^{{\frac {2\pi i}{n}}\varepsilon (X_{i})(2\varepsilon (Y)+\varepsilon (X^{i}))}}
  • [ X , [ Y , Z ] ] = [ [ X i , Y ] , [ X i , Z ] ] e 2 π i n ε ( Y ) ε ( X i ) {\displaystyle [X,[Y,Z]]=[[X_{i},Y],[X^{i},Z]]e^{{\frac {2\pi i}{n}}\varepsilon (Y)\varepsilon (X^{i})}}

for pure graded elements X, Y, and Z.

We don't have any images related to Anyonic Lie algebra yet.
We don't have any YouTube videos related to Anyonic Lie algebra yet.
We don't have any PDF documents related to Anyonic Lie algebra yet.
We don't have any Books related to Anyonic Lie algebra yet.
We don't have any archived web articles related to Anyonic Lie algebra yet.

References

  1. Majid, S. (21 Aug 1997). "Anyonic Lie Algebras". Czechoslov. J. Phys. 47 (12): 1241–1250. arXiv:q-alg/9708022. Bibcode:1997CzJPh..47.1241M. doi:10.1023/A:1022877616496. /wiki/ArXiv_(identifier)