In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group.
Factor of automorphy
In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group G {\displaystyle G} acts on a complex-analytic manifold X {\displaystyle X} . Then, G {\displaystyle G} also acts on the space of holomorphic functions from X {\displaystyle X} to the complex numbers. A function f {\displaystyle f} is termed an automorphic form if the following holds:
f ( g . x ) = j g ( x ) f ( x ) {\displaystyle f(g.x)=j_{g}(x)f(x)}where j g ( x ) {\displaystyle j_{g}(x)} is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of G {\displaystyle G} .
The factor of automorphy for the automorphic form f {\displaystyle f} is the function j {\displaystyle j} . An automorphic function is an automorphic form for which j {\displaystyle j} is the identity.
Some facts about factors of automorphy:
- Every factor of automorphy is a cocycle for the action of G {\displaystyle G} on the multiplicative group of everywhere nonzero holomorphic functions.
- The factor of automorphy is a coboundary if and only if it arises from an everywhere nonzero automorphic form.
- For a given factor of automorphy, the space of automorphic forms is a vector space.
- The pointwise product of two automorphic forms is an automorphic form corresponding to the product of the corresponding factors of automorphy.
Relation between factors of automorphy and other notions:
- Let Γ {\displaystyle \Gamma } be a lattice in a Lie group G {\displaystyle G} . Then, a factor of automorphy for Γ {\displaystyle \Gamma } corresponds to a line bundle on the quotient group G / Γ {\displaystyle G/\Gamma } . Further, the automorphic forms for a given factor of automorphy correspond to sections of the corresponding line bundle.
The specific case of Γ {\displaystyle \Gamma } a subgroup of SL(2, R), acting on the upper half-plane, is treated in the article on automorphic factors.
Examples
- Kleinian group – Discrete group of Möbius transformations
- Elliptic modular function – Modular function in mathematicsPages displaying short descriptions of redirect targets
- Modular function – Analytic function on the upper half-plane with a certain behavior under the modular groupPages displaying short descriptions of redirect targets
- Complex torus
- A.N. Parshin (2001) [1994], "Automorphic Form", Encyclopedia of Mathematics, EMS Press
- Andrianov, A.N.; Parshin, A.N. (2001) [1994], "Automorphic Function", Encyclopedia of Mathematics, EMS Press
- Ford, Lester R. (1929), Automorphic functions, New York: McGraw-Hill, JFM 55.0810.04
- Fricke, Robert; Klein, Felix (1897), Vorlesungen über die Theorie der automorphen Functionen (in German), vol. I. Die gruppentheoretischen Grundlagen., Leipzig: B. G. Teubner, JFM 28.0334.01
- Fricke, Robert; Klein, Felix (1912), Vorlesungen über die Theorie der automorphen Functionen. Zweiter Band: Die funktionentheoretischen Ausführungen und die Anwendungen. 1. Lieferung: Engere Theorie der automorphen Funktionen. (in German), Leipzig: B. G. Teubner., JFM 32.0430.01