Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Besov space
Generalization of Sobolev spaces

In mathematics, the Besov space (named after Oleg Vladimirovich Besov) B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. These spaces, as well as the similarly defined Triebel–Lizorkin spaces, serve to generalize more elementary function spaces such as Sobolev spaces and are effective at measuring regularity properties of functions.

We don't have any images related to Besov space yet.
We don't have any YouTube videos related to Besov space yet.
We don't have any PDF documents related to Besov space yet.
We don't have any Books related to Besov space yet.
We don't have any archived web articles related to Besov space yet.

Definition

Several equivalent definitions exist. One of them is given below. This definition is quite limited because it does not extend to the range s ≤ 0.

Let

Δ h f ( x ) = f ( x − h ) − f ( x ) {\displaystyle \Delta _{h}f(x)=f(x-h)-f(x)}

and define the modulus of continuity by

ω p 2 ( f , t ) = sup | h | ≤ t ‖ Δ h 2 f ‖ p {\displaystyle \omega _{p}^{2}(f,t)=\sup _{|h|\leq t}\left\|\Delta _{h}^{2}f\right\|_{p}}

Let n be a non-negative integer and define: s = n + α with 0 < α ≤ 1. The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} contains all functions f such that

f ∈ W n , p ( R ) , ∫ 0 ∞ | ω p 2 ( f ( n ) , t ) t α | q d t t < ∞ . {\displaystyle f\in W^{n,p}(\mathbf {R} ),\qquad \int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}<\infty .}

Norm

The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is equipped with the norm

‖ f ‖ B p , q s ( R ) = ( ‖ f ‖ W n , p ( R ) q + ∫ 0 ∞ | ω p 2 ( f ( n ) , t ) t α | q d t t ) 1 q {\displaystyle \left\|f\right\|_{B_{p,q}^{s}(\mathbf {R} )}=\left(\|f\|_{W^{n,p}(\mathbf {R} )}^{q}+\int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}\right)^{\frac {1}{q}}}

The Besov spaces B 2 , 2 s ( R ) {\displaystyle B_{2,2}^{s}(\mathbf {R} )} coincide with the more classical Sobolev spaces H s ( R ) {\displaystyle H^{s}(\mathbf {R} )} .

If p = q {\displaystyle p=q} and s {\displaystyle s} is not an integer, then B p , p s ( R ) = W ¯ s , p ( R ) {\displaystyle B_{p,p}^{s}(\mathbf {R} )={\bar {W}}^{s,p}(\mathbf {R} )} , where W ¯ s , p ( R ) {\displaystyle {\bar {W}}^{s,p}(\mathbf {R} )} denotes the Sobolev–Slobodeckij space.

  • Triebel, Hans (1992). Theory of Function Spaces II. doi:10.1007/978-3-0346-0419-2. ISBN 978-3-0346-0418-5.
  • Besov, O. V. (1959). "On some families of functional spaces. Imbedding and extension theorems". Dokl. Akad. Nauk SSSR (in Russian). 126: 1163–1165. MR 0107165.
  • DeVore, R. and Lorentz, G. "Constructive Approximation", 1993.
  • DeVore, R., Kyriazis, G. and Wang, P. "Multiscale characterizations of Besov spaces on bounded domains", Journal of Approximation Theory 93, 273-292 (1998).
  • Leoni, Giovanni (2017). A First Course in Sobolev Spaces: Second Edition. Graduate Studies in Mathematics. 181. American Mathematical Society. pp. 734. ISBN 978-1-4704-2921-8