Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Binary matroid
Abstraction of mod-2 vector independence

In matroid theory, a binary matroid is a matroid that can be represented over the finite field GF(2). That is, up to isomorphism, they are the matroids whose elements are the columns of a (0,1)-matrix and whose sets of elements are independent if and only if the corresponding columns are linearly independent in GF(2).

We don't have any images related to Binary matroid yet.
We don't have any YouTube videos related to Binary matroid yet.
We don't have any PDF documents related to Binary matroid yet.
We don't have any Books related to Binary matroid yet.
We don't have any archived web articles related to Binary matroid yet.

Alternative characterizations

A matroid M {\displaystyle M} is binary if and only if

  • It is the matroid defined from a symmetric (0,1)-matrix.2
  • For every set S {\displaystyle {\mathcal {S}}} of circuits of the matroid, the symmetric difference of the circuits in S {\displaystyle {\mathcal {S}}} can be represented as a disjoint union of circuits.34
  • For every pair of circuits of the matroid, their symmetric difference contains another circuit.5
  • For every pair C , D {\displaystyle C,D} where C {\displaystyle C} is a circuit of M {\displaystyle M} and D {\displaystyle D} is a circuit of the dual matroid of M {\displaystyle M} , | C ∩ D | {\displaystyle |C\cap D|} is an even number.67
  • For every pair B , C {\displaystyle B,C} where B {\displaystyle B} is a basis of M {\displaystyle M} and C {\displaystyle C} is a circuit of M {\displaystyle M} , C {\displaystyle C} is the symmetric difference of the fundamental circuits induced in B {\displaystyle B} by the elements of C ∖ B {\displaystyle C\setminus B} .89
  • No matroid minor of M {\displaystyle M} is the uniform matroid U 4 2 {\displaystyle U{}_{4}^{2}} , the four-point line.101112
  • In the geometric lattice associated to the matroid, every interval of height two has at most five elements.13

Every regular matroid, and every graphic matroid, is binary.14 A binary matroid is regular if and only if it does not contain the Fano plane (a seven-element non-regular binary matroid) or its dual as a minor.15 A binary matroid is graphic if and only if its minors do not include the dual of the graphic matroid of K 5 {\displaystyle K_{5}} nor of K 3 , 3 {\displaystyle K_{3,3}} .16 If every circuit of a binary matroid has odd cardinality, then its circuits must all be disjoint from each other; in this case, it may be represented as the graphic matroid of a cactus graph.17

Additional properties

If M {\displaystyle M} is a binary matroid, then so is its dual, and so is every minor of M {\displaystyle M} .18 Additionally, the direct sum of binary matroids is binary.

Harary & Welsh (1969) define a bipartite matroid to be a matroid in which every circuit has even cardinality, and an Eulerian matroid to be a matroid in which the elements can be partitioned into disjoint circuits. Within the class of graphic matroids, these two properties describe the matroids of bipartite graphs and Eulerian graphs (not-necessarily-connected graphs in which all vertices have even degree), respectively. For planar graphs (and therefore also for the graphic matroids of planar graphs) these two properties are dual: a planar graph or its matroid is bipartite if and only if its dual is Eulerian. The same is true for binary matroids. However, there exist non-binary matroids for which this duality breaks down.1920

Any algorithm that tests whether a given matroid is binary, given access to the matroid via an independence oracle, must perform an exponential number of oracle queries, and therefore cannot take polynomial time.21

References

  1. Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397. 9780486474397

  2. Jaeger, F. (1983), "Symmetric representations of binary matroids", Combinatorial mathematics (Marseille-Luminy, 1981), North-Holland Math. Stud., vol. 75, Amsterdam: North-Holland, pp. 371–376, MR 0841317. /wiki/MR_(identifier)

  3. Whitney, Hassler (1935), "On the abstract properties of linear dependence", American Journal of Mathematics, 57 (3), The Johns Hopkins University Press: 509–533, doi:10.2307/2371182, hdl:10338.dmlcz/100694, JSTOR 2371182, MR 1507091. /wiki/Hassler_Whitney

  4. Welsh (2010), Theorem 10.1.3, p. 162. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  5. Welsh (2010), Theorem 10.1.3, p. 162. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  6. Welsh (2010), Theorem 10.1.3, p. 162. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  7. Harary, Frank; Welsh, Dominic (1969), "Matroids versus graphs", The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, doi:10.1007/BFb0060114, ISBN 978-3-540-04629-5, MR 0263666. 978-3-540-04629-5

  8. Welsh (2010), Theorem 10.1.3, p. 162. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  9. Harary, Frank; Welsh, Dominic (1969), "Matroids versus graphs", The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, doi:10.1007/BFb0060114, ISBN 978-3-540-04629-5, MR 0263666. 978-3-540-04629-5

  10. Tutte, W. T. (1958), "A homotopy theorem for matroids. I, II", Transactions of the American Mathematical Society, 88 (1): 144–174, doi:10.2307/1993244, JSTOR 1993244, MR 0101526. /wiki/W._T._Tutte

  11. Tutte, W. T. (1965), "Lectures on matroids", Journal of Research of the National Bureau of Standards, 69B: 1–47, doi:10.6028/jres.069b.001, MR 0179781. http://cdm16009.contentdm.oclc.org/cdm/ref/collection/p13011coll6/id/66650

  12. Welsh (2010), Section 10.2, "An excluded minor criterion for a matroid to be binary", pp. 167–169. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  13. Welsh (2010), Section 10.2, "An excluded minor criterion for a matroid to be binary", pp. 167–169. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  14. Harary, Frank; Welsh, Dominic (1969), "Matroids versus graphs", The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, doi:10.1007/BFb0060114, ISBN 978-3-540-04629-5, MR 0263666. 978-3-540-04629-5

  15. Welsh (2010), Theorem 10.4.1, p. 175. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  16. Welsh (2010), Theorem 10.5.1, p. 176. - Welsh, D. J. A. (2010) [1976], "10. Binary Matroids", Matroid Theory, Courier Dover Publications, pp. 161–182, ISBN 9780486474397

  17. Harary, Frank; Welsh, Dominic (1969), "Matroids versus graphs", The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, doi:10.1007/BFb0060114, ISBN 978-3-540-04629-5, MR 0263666. 978-3-540-04629-5

  18. Harary, Frank; Welsh, Dominic (1969), "Matroids versus graphs", The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, doi:10.1007/BFb0060114, ISBN 978-3-540-04629-5, MR 0263666. 978-3-540-04629-5

  19. Harary, Frank; Welsh, Dominic (1969), "Matroids versus graphs", The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, doi:10.1007/BFb0060114, ISBN 978-3-540-04629-5, MR 0263666. 978-3-540-04629-5

  20. Welsh, D. J. A. (1969), "Euler and bipartite matroids", Journal of Combinatorial Theory, 6 (4): 375–377, doi:10.1016/s0021-9800(69)80033-5, MR 0237368/ /wiki/Dominic_Welsh

  21. Seymour, P. D. (1981), "Recognizing graphic matroids", Combinatorica, 1 (1): 75–78, doi:10.1007/BF02579179, MR 0602418, S2CID 35579707. /wiki/Paul_Seymour_(mathematician)