Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Bipolar theorem
Theorem in convex analysis

In mathematics, the bipolar theorem is a theorem in functional analysis that characterizes the bipolar (that is, the polar of the polar) of a set. In convex analysis, the bipolar theorem refers to a necessary and sufficient conditions for a cone to be equal to its bipolar. The bipolar theorem can be seen as a special case of the Fenchel–Moreau theorem.: 76–77 

We don't have any images related to Bipolar theorem yet.
We don't have any YouTube videos related to Bipolar theorem yet.
We don't have any PDF documents related to Bipolar theorem yet.
We don't have any Books related to Bipolar theorem yet.
We don't have any archived web articles related to Bipolar theorem yet.

Preliminaries

Main article: Polar set

Suppose that X {\displaystyle X} is a topological vector space (TVS) with a continuous dual space X ′ {\displaystyle X^{\prime }} and let ⟨ x , x ′ ⟩ := x ′ ( x ) {\displaystyle \left\langle x,x^{\prime }\right\rangle :=x^{\prime }(x)} for all x ∈ X {\displaystyle x\in X} and x ′ ∈ X ′ . {\displaystyle x^{\prime }\in X^{\prime }.} The convex hull of a set A , {\displaystyle A,} denoted by co ⁡ A , {\displaystyle \operatorname {co} A,} is the smallest convex set containing A . {\displaystyle A.} The convex balanced hull of a set A {\displaystyle A} is the smallest convex balanced set containing A . {\displaystyle A.}

The polar of a subset A ⊆ X {\displaystyle A\subseteq X} is defined to be: A ∘ := { x ′ ∈ X ′ : sup a ∈ A | ⟨ a , x ′ ⟩ | ≤ 1 } . {\displaystyle A^{\circ }:=\left\{x^{\prime }\in X^{\prime }:\sup _{a\in A}\left|\left\langle a,x^{\prime }\right\rangle \right|\leq 1\right\}.} while the prepolar of a subset B ⊆ X ′ {\displaystyle B\subseteq X^{\prime }} is: ∘ B := { x ∈ X : sup x ′ ∈ B | ⟨ x , x ′ ⟩ | ≤ 1 } . {\displaystyle {}^{\circ }B:=\left\{x\in X:\sup _{x^{\prime }\in B}\left|\left\langle x,x^{\prime }\right\rangle \right|\leq 1\right\}.} The bipolar of a subset A ⊆ X , {\displaystyle A\subseteq X,} often denoted by A ∘ ∘ {\displaystyle A^{\circ \circ }} is the set A ∘ ∘ := ∘ ( A ∘ ) = { x ∈ X : sup x ′ ∈ A ∘ | ⟨ x , x ′ ⟩ | ≤ 1 } . {\displaystyle A^{\circ \circ }:={}^{\circ }\left(A^{\circ }\right)=\left\{x\in X:\sup _{x^{\prime }\in A^{\circ }}\left|\left\langle x,x^{\prime }\right\rangle \right|\leq 1\right\}.}

Statement in functional analysis

Let σ ( X , X ′ ) {\displaystyle \sigma \left(X,X^{\prime }\right)} denote the weak topology on X {\displaystyle X} (that is, the weakest TVS topology on X {\displaystyle X} making all linear functionals in X ′ {\displaystyle X^{\prime }} continuous).

The bipolar theorem:2 The bipolar of a subset A ⊆ X {\displaystyle A\subseteq X} is equal to the σ ( X , X ′ ) {\displaystyle \sigma \left(X,X^{\prime }\right)} -closure of the convex balanced hull of A . {\displaystyle A.}

Statement in convex analysis

The bipolar theorem:3: 54 4 For any nonempty cone A {\displaystyle A} in some linear space X , {\displaystyle X,} the bipolar set A ∘ ∘ {\displaystyle A^{\circ \circ }} is given by:

A ∘ ∘ = cl ⁡ ( co ⁡ { r a : r ≥ 0 , a ∈ A } ) . {\displaystyle A^{\circ \circ }=\operatorname {cl} (\operatorname {co} \{ra:r\geq 0,a\in A\}).}

Special case

A subset C ⊆ X {\displaystyle C\subseteq X} is a nonempty closed convex cone if and only if C + + = C ∘ ∘ = C {\displaystyle C^{++}=C^{\circ \circ }=C} when C + + = ( C + ) + , {\displaystyle C^{++}=\left(C^{+}\right)^{+},} where A + {\displaystyle A^{+}} denotes the positive dual cone of a set A . {\displaystyle A.} 56 Or more generally, if C {\displaystyle C} is a nonempty convex cone then the bipolar cone is given by C ∘ ∘ = cl ⁡ C . {\displaystyle C^{\circ \circ }=\operatorname {cl} C.}

Relation to the Fenchel–Moreau theorem

Let f ( x ) := δ ( x | C ) = { 0 x ∈ C ∞ otherwise {\displaystyle f(x):=\delta (x|C)={\begin{cases}0&x\in C\\\infty &{\text{otherwise}}\end{cases}}} be the indicator function for a cone C . {\displaystyle C.} Then the convex conjugate, f ∗ ( x ∗ ) = δ ( x ∗ | C ∘ ) = δ ∗ ( x ∗ | C ) = sup x ∈ C ⟨ x ∗ , x ⟩ {\displaystyle f^{*}(x^{*})=\delta \left(x^{*}|C^{\circ }\right)=\delta ^{*}\left(x^{*}|C\right)=\sup _{x\in C}\langle x^{*},x\rangle } is the support function for C , {\displaystyle C,} and f ∗ ∗ ( x ) = δ ( x | C ∘ ∘ ) . {\displaystyle f^{**}(x)=\delta (x|C^{\circ \circ }).} Therefore, C = C ∘ ∘ {\displaystyle C=C^{\circ \circ }} if and only if f = f ∗ ∗ . {\displaystyle f=f^{**}.} 7: 54 8

See also

  • Dual system
  • Fenchel–Moreau theorem – Mathematical theorem in convex analysis − A generalization of the bipolar theorem.
  • Polar set – Subset of all points that is bounded by some given point of a dual (in a dual pairing)

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.

References

  1. Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 9780387295701. 9780387295701

  2. Narici & Beckenstein 2011, pp. 225–273. - Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834. https://search.worldcat.org/oclc/144216834

  3. Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 9780387295701. 9780387295701

  4. Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (pdf). Cambridge University Press. pp. 51–53. ISBN 9780521833783. Retrieved October 15, 2011. 9780521833783

  5. Boyd, Stephen P.; Vandenberghe, Lieven (2004). Convex Optimization (pdf). Cambridge University Press. pp. 51–53. ISBN 9780521833783. Retrieved October 15, 2011. 9780521833783

  6. Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. pp. 121–125. ISBN 9780691015866. 9780691015866

  7. Borwein, Jonathan; Lewis, Adrian (2006). Convex Analysis and Nonlinear Optimization: Theory and Examples (2 ed.). Springer. ISBN 9780387295701. 9780387295701

  8. Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. pp. 121–125. ISBN 9780691015866. 9780691015866