Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Block LU decomposition

In linear algebra, a Block LU decomposition is a matrix decomposition of a block matrix into a lower block triangular matrix L and an upper block triangular matrix U. This decomposition is used in numerical analysis to reduce the complexity of the block matrix formula.

We don't have any images related to Block LU decomposition yet.
We don't have any YouTube videos related to Block LU decomposition yet.
We don't have any PDF documents related to Block LU decomposition yet.
We don't have any Books related to Block LU decomposition yet.
We don't have any archived web articles related to Block LU decomposition yet.

Block LDU decomposition

( A B C D ) = ( I 0 C A − 1 I ) ( A 0 0 D − C A − 1 B ) ( I A − 1 B 0 I ) {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&0\\CA^{-1}&I\end{pmatrix}}{\begin{pmatrix}A&0\\0&D-CA^{-1}B\end{pmatrix}}{\begin{pmatrix}I&A^{-1}B\\0&I\end{pmatrix}}}

Block Cholesky decomposition

Consider a block matrix:

( A B C D ) = ( I C A − 1 ) A ( I A − 1 B ) + ( 0 0 0 D − C A − 1 B ) , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I\\CA^{-1}\end{pmatrix}}\,A\,{\begin{pmatrix}I&A^{-1}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&D-CA^{-1}B\end{pmatrix}},}

where the matrix A {\displaystyle {\begin{matrix}A\end{matrix}}} is assumed to be non-singular, I {\displaystyle {\begin{matrix}I\end{matrix}}} is an identity matrix with proper dimension, and 0 {\displaystyle {\begin{matrix}0\end{matrix}}} is a matrix whose elements are all zero.

We can also rewrite the above equation using the half matrices:

( A B C D ) = ( A 1 2 C A − ∗ 2 ) ( A ∗ 2 A − 1 2 B ) + ( 0 0 0 Q 1 2 ) ( 0 0 0 Q ∗ 2 ) , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}A^{\frac {1}{2}}\\CA^{-{\frac {*}{2}}}\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {*}{2}}\end{pmatrix}},}

where the Schur complement of A {\displaystyle {\begin{matrix}A\end{matrix}}} in the block matrix is defined by

Q = D − C A − 1 B {\displaystyle {\begin{matrix}Q=D-CA^{-1}B\end{matrix}}}

and the half matrices can be calculated by means of Cholesky decomposition or LDL decomposition. The half matrices satisfy that

A 1 2 A ∗ 2 = A ; A 1 2 A − 1 2 = I ; A − ∗ 2 A ∗ 2 = I ; Q 1 2 Q ∗ 2 = Q . {\displaystyle {\begin{matrix}A^{\frac {1}{2}}\,A^{\frac {*}{2}}=A;\end{matrix}}\qquad {\begin{matrix}A^{\frac {1}{2}}\,A^{-{\frac {1}{2}}}=I;\end{matrix}}\qquad {\begin{matrix}A^{-{\frac {*}{2}}}\,A^{\frac {*}{2}}=I;\end{matrix}}\qquad {\begin{matrix}Q^{\frac {1}{2}}\,Q^{\frac {*}{2}}=Q.\end{matrix}}}

Thus, we have

( A B C D ) = L U , {\displaystyle {\begin{pmatrix}A&B\\C&D\end{pmatrix}}=LU,}

where

L U = ( A 1 2 0 C A − ∗ 2 0 ) ( A ∗ 2 A − 1 2 B 0 0 ) + ( 0 0 0 Q 1 2 ) ( 0 0 0 Q ∗ 2 ) . {\displaystyle LU={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&0\end{pmatrix}}{\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\\0&0\end{pmatrix}}+{\begin{pmatrix}0&0\\0&Q^{\frac {1}{2}}\end{pmatrix}}{\begin{pmatrix}0&0\\0&Q^{\frac {*}{2}}\end{pmatrix}}.}

The matrix L U {\displaystyle {\begin{matrix}LU\end{matrix}}} can be decomposed in an algebraic manner into

L = ( A 1 2 0 C A − ∗ 2 Q 1 2 )     a n d     U = ( A ∗ 2 A − 1 2 B 0 Q ∗ 2 ) . {\displaystyle L={\begin{pmatrix}A^{\frac {1}{2}}&0\\CA^{-{\frac {*}{2}}}&Q^{\frac {1}{2}}\end{pmatrix}}\mathrm {~~and~~} U={\begin{pmatrix}A^{\frac {*}{2}}&A^{-{\frac {1}{2}}}B\\0&Q^{\frac {*}{2}}\end{pmatrix}}.}

See also