Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Bockstein spectral sequence

In mathematics, the Bockstein spectral sequence is a spectral sequence relating the homology with mod p coefficients and the homology reduced mod p. It is named after Meyer Bockstein.

We don't have any images related to Bockstein spectral sequence yet.
We don't have any YouTube videos related to Bockstein spectral sequence yet.
We don't have any PDF documents related to Bockstein spectral sequence yet.
We don't have any Books related to Bockstein spectral sequence yet.
We don't have any archived web articles related to Bockstein spectral sequence yet.

Definition

Let C be a chain complex of torsion-free abelian groups and p a prime number. Then we have the exact sequence:

0 ⟶ C ⟶ p C ⟶ mod p C ⊗ Z / p ⟶ 0. {\displaystyle 0\longrightarrow C{\overset {p}{\longrightarrow }}C{\overset {{\text{mod}}p}{\longrightarrow }}C\otimes \mathbb {Z} /p\longrightarrow 0.}

Taking integral homology H, we get the exact couple of "doubly graded" abelian groups:

H ∗ ( C ) ⟶ i = p H ∗ ( C ) ⟶ j H ∗ ( C ⊗ Z / p ) ⟶ k . {\displaystyle H_{*}(C){\overset {i=p}{\longrightarrow }}H_{*}(C){\overset {j}{\longrightarrow }}H_{*}(C\otimes \mathbb {Z} /p){\overset {k}{\longrightarrow }}.}

where the grading goes: H ∗ ( C ) s , t = H s + t ( C ) {\displaystyle H_{*}(C)_{s,t}=H_{s+t}(C)} and the same for H ∗ ( C ⊗ Z / p ) , deg ⁡ i = ( 1 , − 1 ) , deg ⁡ j = ( 0 , 0 ) , deg ⁡ k = ( − 1 , 0 ) . {\displaystyle H_{*}(C\otimes \mathbb {Z} /p),\deg i=(1,-1),\deg j=(0,0),\deg k=(-1,0).}

This gives the first page of the spectral sequence: we take E s , t 1 = H s + t ( C ⊗ Z / p ) {\displaystyle E_{s,t}^{1}=H_{s+t}(C\otimes \mathbb {Z} /p)} with the differential 1 d = j ∘ k {\displaystyle {}^{1}d=j\circ k} . The derived couple of the above exact couple then gives the second page and so forth. Explicitly, we have D r = p r − 1 H ∗ ( C ) {\displaystyle D^{r}=p^{r-1}H_{*}(C)} that fits into the exact couple:

D r ⟶ i = p D r ⟶ r j E r ⟶ k {\displaystyle D^{r}{\overset {i=p}{\longrightarrow }}D^{r}{\overset {{}^{r}j}{\longrightarrow }}E^{r}{\overset {k}{\longrightarrow }}}

where r j = ( mod  p ) ∘ p − r + 1 {\displaystyle {}^{r}j=({\text{mod }}p)\circ p^{-{r+1}}} and deg ⁡ ( r j ) = ( − ( r − 1 ) , r − 1 ) {\displaystyle \deg({}^{r}j)=(-(r-1),r-1)} (the degrees of i, k are the same as before). Now, taking D n r ⊗ − {\displaystyle D_{n}^{r}\otimes -} of

0 ⟶ Z ⟶ p Z ⟶ Z / p ⟶ 0 , {\displaystyle 0\longrightarrow \mathbb {Z} {\overset {p}{\longrightarrow }}\mathbb {Z} \longrightarrow \mathbb {Z} /p\longrightarrow 0,}

we get:

0 ⟶ Tor 1 Z ⁡ ( D n r , Z / p ) ⟶ D n r ⟶ p D n r ⟶ D n r ⊗ Z / p ⟶ 0 {\displaystyle 0\longrightarrow \operatorname {Tor} _{1}^{\mathbb {Z} }(D_{n}^{r},\mathbb {Z} /p)\longrightarrow D_{n}^{r}{\overset {p}{\longrightarrow }}D_{n}^{r}\longrightarrow D_{n}^{r}\otimes \mathbb {Z} /p\longrightarrow 0} .

This tells the kernel and cokernel of D n r ⟶ p D n r {\displaystyle D_{n}^{r}{\overset {p}{\longrightarrow }}D_{n}^{r}} . Expanding the exact couple into a long exact sequence, we get: for any r,

0 ⟶ ( p r − 1 H n ( C ) ) ⊗ Z / p ⟶ E n , 0 r ⟶ Tor ⁡ ( p r − 1 H n − 1 ( C ) , Z / p ) ⟶ 0 {\displaystyle 0\longrightarrow (p^{r-1}H_{n}(C))\otimes \mathbb {Z} /p\longrightarrow E_{n,0}^{r}\longrightarrow \operatorname {Tor} (p^{r-1}H_{n-1}(C),\mathbb {Z} /p)\longrightarrow 0} .

When r = 1 {\displaystyle r=1} , this is the same thing as the universal coefficient theorem for homology.

Assume the abelian group H ∗ ( C ) {\displaystyle H_{*}(C)} is finitely generated; in particular, only finitely many cyclic modules of the form Z / p s {\displaystyle \mathbb {Z} /p^{s}} can appear as a direct summand of H ∗ ( C ) {\displaystyle H_{*}(C)} . Letting r → ∞ {\displaystyle r\to \infty } we thus see E ∞ {\displaystyle E^{\infty }} is isomorphic to ( free part of  H ∗ ( C ) ) ⊗ Z / p {\displaystyle ({\text{free part of }}H_{*}(C))\otimes \mathbb {Z} /p} .