Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
CSS code
Linear algebra

In quantum error correction, CSS codes, named after their inventors, Robert Calderbank, Peter Shor and Andrew Steane, are a special type of stabilizer code constructed from classical codes with some special properties. An example of a CSS code is the Steane code.

We don't have any images related to CSS code yet.
We don't have any YouTube videos related to CSS code yet.
We don't have any PDF documents related to CSS code yet.
We don't have any Books related to CSS code yet.
We don't have any archived web articles related to CSS code yet.

Construction

Let C 1 {\displaystyle C_{1}} and C 2 {\displaystyle C_{2}} be two (classical) [ n , k 1 ] {\displaystyle [n,k_{1}]} , [ n , k 2 ] {\displaystyle [n,k_{2}]} codes such, that C 2 ⊂ C 1 {\displaystyle C_{2}\subset C_{1}} and C 1 , C 2 ⊥ {\displaystyle C_{1},C_{2}^{\perp }} both have minimal distance ≥ 2 t + 1 {\displaystyle \geq 2t+1} , where C 2 ⊥ {\displaystyle C_{2}^{\perp }} is the code dual to C 2 {\displaystyle C_{2}} . Then define CSS ( C 1 , C 2 ) {\displaystyle {\text{CSS}}(C_{1},C_{2})} , the CSS code of C 1 {\displaystyle C_{1}} over C 2 {\displaystyle C_{2}} as an [ n , k 1 − k 2 , d ] {\displaystyle [n,k_{1}-k_{2},d]} code, with d ≥ 2 t + 1 {\displaystyle d\geq 2t+1} as follows:

Define for x ∈ C 1 : | x + C 2 ⟩ := {\displaystyle x\in C_{1}:{|}x+C_{2}\rangle :=} 1 / | C 2 | {\displaystyle 1/{\sqrt {{|}C_{2}{|}}}} ∑ y ∈ C 2 | x + y ⟩ {\displaystyle \sum _{y\in C_{2}}{|}x+y\rangle } , where + {\displaystyle +} is bitwise addition modulo 2. Then CSS ( C 1 , C 2 ) {\displaystyle {\text{CSS}}(C_{1},C_{2})} is defined as { | x + C 2 ⟩ ∣ x ∈ C 1 } {\displaystyle \{{|}x+C_{2}\rangle \mid x\in C_{1}\}} .

Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-00217-3. OCLC 844974180.

References

  1. Robert Calderbank and Peter Shor (1996). "Good quantum error-correcting codes exist". Physical Review A. 54 (2): 1098–1105. arXiv:quant-ph/9512032. Bibcode:1996PhRvA..54.1098C. doi:10.1103/PhysRevA.54.1098. PMID 9913578. S2CID 11524969. /wiki/Robert_Calderbank

  2. Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proc. R. Soc. Lond. A. 452 (1954): 2551–2577. arXiv:quant-ph/9601029. Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID 8246615. /wiki/Andrew_Steane