Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Cauchy process
Type of stochastic process in probability

In probability theory, a Cauchy process is a type of stochastic process. There are symmetric and asymmetric forms of the Cauchy process. The unspecified term "Cauchy process" is often used to refer to the symmetric Cauchy process.

The Cauchy process has a number of properties:

  1. It is a Lévy process
  2. It is a stable process
  3. It is a pure jump process
  4. Its moments are infinite.
We don't have any images related to Cauchy process yet.
We don't have any YouTube videos related to Cauchy process yet.
We don't have any PDF documents related to Cauchy process yet.
We don't have any Books related to Cauchy process yet.
We don't have any archived web articles related to Cauchy process yet.

Symmetric Cauchy process

The symmetric Cauchy process can be described by a Brownian motion or Wiener process subject to a Lévy subordinator.9 The Lévy subordinator is a process associated with a Lévy distribution having location parameter of 0 {\displaystyle 0} and a scale parameter of t 2 / 2 {\displaystyle t^{2}/2} .10 The Lévy distribution is a special case of the inverse-gamma distribution. So, using C {\displaystyle C} to represent the Cauchy process and L {\displaystyle L} to represent the Lévy subordinator, the symmetric Cauchy process can be described as:

C ( t ; 0 , 1 ) := W ( L ( t ; 0 , t 2 / 2 ) ) . {\displaystyle C(t;0,1)\;:=\;W(L(t;0,t^{2}/2)).}

The Lévy distribution is the probability of the first hitting time for a Brownian motion, and thus the Cauchy process is essentially the result of two independent Brownian motion processes.11

The Lévy–Khintchine representation for the symmetric Cauchy process is a triplet with zero drift and zero diffusion, giving a Lévy–Khintchine triplet of ( 0 , 0 , W ) {\displaystyle (0,0,W)} , where W ( d x ) = d x / ( π x 2 ) {\displaystyle W(dx)=dx/(\pi x^{2})} .12

The marginal characteristic function of the symmetric Cauchy process has the form:1314

E ⁡ [ e i θ X t ] = e − t | θ | . {\displaystyle \operatorname {E} {\Big [}e^{i\theta X_{t}}{\Big ]}=e^{-t|\theta |}.}

The marginal probability distribution of the symmetric Cauchy process is the Cauchy distribution whose density is1516

f ( x ; t ) = 1 π [ t x 2 + t 2 ] . {\displaystyle f(x;t)={1 \over \pi }\left[{t \over x^{2}+t^{2}}\right].}

Asymmetric Cauchy process

The asymmetric Cauchy process is defined in terms of a parameter β {\displaystyle \beta } . Here β {\displaystyle \beta } is the skewness parameter, and its absolute value must be less than or equal to 1.17 In the case where | β | = 1 {\displaystyle |\beta |=1} the process is considered a completely asymmetric Cauchy process.18

The Lévy–Khintchine triplet has the form ( 0 , 0 , W ) {\displaystyle (0,0,W)} , where W ( d x ) = { A x − 2 d x if  x > 0 B x − 2 d x if  x < 0 {\displaystyle W(dx)={\begin{cases}Ax^{-2}\,dx&{\text{if }}x>0\\Bx^{-2}\,dx&{\text{if }}x<0\end{cases}}} , where A ≠ B {\displaystyle A\neq B} , A > 0 {\displaystyle A>0} and B > 0 {\displaystyle B>0} .19

Given this, β {\displaystyle \beta } is a function of A {\displaystyle A} and B {\displaystyle B} .

The characteristic function of the asymmetric Cauchy distribution has the form:20

E ⁡ [ e i θ X t ] = e − t ( | θ | + i β θ ln ⁡ | θ | / ( 2 π ) ) . {\displaystyle \operatorname {E} {\Big [}e^{i\theta X_{t}}{\Big ]}=e^{-t(|\theta |+i\beta \theta \ln |\theta |/(2\pi ))}.}

The marginal probability distribution of the asymmetric Cauchy process is a stable distribution with index of stability (i.e., α parameter) equal to 1.

References

  1. Kovalenko, I.N.; et al. (1996). Models of Random Processes: A Handbook for Mathematicians and Engineers. CRC Press. pp. 210–211. ISBN 9780849328701. 9780849328701

  2. Engelbert, H.J., Kurenok, V.P. & Zalinescu, A. (2006). "On Existence and Uniqueness of Reflected Solutions of Stochastic Equations Driven by Symmetric Stable Processes". In Kabanov, Y.; Liptser, R.; Stoyanov, J. (eds.). From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift. Springer. p. 228. ISBN 9783540307884.{{cite book}}: CS1 maint: multiple names: authors list (link) 9783540307884

  3. Winkel, M. "Introduction to Levy processes" (PDF). pp. 15–16. Retrieved 2013-02-07. http://www.stats.ox.ac.uk/~winkel/lp1.pdf

  4. Jacob, N. (2005). Pseudo Differential Operators & Markov Processes: Markov Processes And Applications, Volume 3. Imperial College Press. p. 135. ISBN 9781860945687. 9781860945687

  5. Bertoin, J. (2001). "Some elements on Lévy processes". In Shanbhag, D.N. (ed.). Stochastic Processes: Theory and Methods. Gulf Professional Publishing. p. 122. ISBN 9780444500144. 9780444500144

  6. Kovalenko, I.N.; et al. (1996). Models of Random Processes: A Handbook for Mathematicians and Engineers. CRC Press. pp. 210–211. ISBN 9780849328701. 9780849328701

  7. Engelbert, H.J., Kurenok, V.P. & Zalinescu, A. (2006). "On Existence and Uniqueness of Reflected Solutions of Stochastic Equations Driven by Symmetric Stable Processes". In Kabanov, Y.; Liptser, R.; Stoyanov, J. (eds.). From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift. Springer. p. 228. ISBN 9783540307884.{{cite book}}: CS1 maint: multiple names: authors list (link) 9783540307884

  8. Kroese, D.P.; Taimre, T.; Botev, Z.I. (2011). Handbook of Monte Carlo Methods. John Wiley & Sons. p. 214. ISBN 9781118014950. 9781118014950

  9. Applebaum, D. "Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes" (PDF). University of Sheffield. pp. 37–53. http://www.applebaum.staff.shef.ac.uk/Brauns2notes.pdf

  10. Applebaum, D. "Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes" (PDF). University of Sheffield. pp. 37–53. http://www.applebaum.staff.shef.ac.uk/Brauns2notes.pdf

  11. Applebaum, D. "Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes" (PDF). University of Sheffield. pp. 37–53. http://www.applebaum.staff.shef.ac.uk/Brauns2notes.pdf

  12. Cinlar, E. (2011). Probability and Stochastics. Springer. p. 332. ISBN 9780387878591. 9780387878591

  13. Kovalenko, I.N.; et al. (1996). Models of Random Processes: A Handbook for Mathematicians and Engineers. CRC Press. pp. 210–211. ISBN 9780849328701. 9780849328701

  14. Cinlar, E. (2011). Probability and Stochastics. Springer. p. 332. ISBN 9780387878591. 9780387878591

  15. Cinlar, E. (2011). Probability and Stochastics. Springer. p. 332. ISBN 9780387878591. 9780387878591

  16. Itô, K. (2006). Essentials of Stochastic Processes. American Mathematical Society. p. 54. ISBN 9780821838983. 9780821838983

  17. Kovalenko, I.N.; et al. (1996). Models of Random Processes: A Handbook for Mathematicians and Engineers. CRC Press. pp. 210–211. ISBN 9780849328701. 9780849328701

  18. Kovalenko, I.N.; et al. (1996). Models of Random Processes: A Handbook for Mathematicians and Engineers. CRC Press. pp. 210–211. ISBN 9780849328701. 9780849328701

  19. Kovalenko, I.N.; et al. (1996). Models of Random Processes: A Handbook for Mathematicians and Engineers. CRC Press. pp. 210–211. ISBN 9780849328701. 9780849328701

  20. Kovalenko, I.N.; et al. (1996). Models of Random Processes: A Handbook for Mathematicians and Engineers. CRC Press. pp. 210–211. ISBN 9780849328701. 9780849328701