Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Chaotropic activity
Disordering of biological structures

Chaotropicity describes the entropic disordering of lipid bilayers and other biomacromolecules which is caused by substances dissolved in water. According to the original usage and work carried out on cellular stress mechanisms and responses,[3] chaotropic substances do not necessarily disorder the structure of water.

The chaotropic activities of solutes in the aqueous phase (e.g. ethanol, butanol, urea, MgCl2, and phenol) have been quantified using an agar-gelation assay. Whereas chaotropicity was first applied to studies of ions, it is equally applicable to alcohols, aromatics, ion mixtures, and other solutes.[3] Furthermore, hydrophobic substances known to stress cellular systems (including benzene and toluene) can chaotropically disorder macromolecules and induce a chaotrope-stress response in microbial cells, even though they partition into the hydrophobic domains of macromolecular systems.

We don't have any images related to Chaotropic activity yet.
We don't have any YouTube videos related to Chaotropic activity yet.
We don't have any PDF documents related to Chaotropic activity yet.
We don't have any Books related to Chaotropic activity yet.
We don't have any archived web articles related to Chaotropic activity yet.

See also

References

  1. Hamaguchi & Geiduschek (1962). "The Effect of Electrolytes on the Stability of the Deoxyribonucleate Helix". J. Am. Chem. Soc. 84 (8): 1329–1338. doi:10.1021/ja00867a001. /wiki/Doi_(identifier)

  2. Hallsworth, J.E. (1998). "Ethanol-induced water stress in yeast". Journal of Fermentation and Bioengineering. 85 (2): 125–137. doi:10.1016/S0922-338X(97)86756-6. /wiki/Doi_(identifier)

  3. Bhaganna, P.; et al. (2010). "Hydrophobic substances induce water stress in microbial cells". Microbial Biotechnology. 3 (6): 701–716. doi:10.1111/j.1751-7915.2010.00203.x. PMC 3815343. PMID 21255365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815343

  4. Ball, P.; Hallsworth, J.E. (2015). "Water structure and chaotropicity: their uses, abuses and biological implications". Physical Chemistry Chemical Physics. 17 (13): 8297–8305. Bibcode:2015PCCP...17.8297B. doi:10.1039/C4CP04564E. PMID 25628033. /wiki/Bibcode_(identifier)

  5. Cray, J.A.; et al. (2013). "A universal measure of chaotropicity and kosmotropicity". Environmental Microbiology. 15 (1): 287–296. doi:10.1111/1462-2920.12018. PMID 23145833. /wiki/Doi_(identifier)

  6. Hamaguchi & Geiduschek (1962). "The Effect of Electrolytes on the Stability of the Deoxyribonucleate Helix". J. Am. Chem. Soc. 84 (8): 1329–1338. doi:10.1021/ja00867a001. /wiki/Doi_(identifier)

  7. Hallsworth, J.E. (1998). "Ethanol-induced water stress in yeast". Journal of Fermentation and Bioengineering. 85 (2): 125–137. doi:10.1016/S0922-338X(97)86756-6. /wiki/Doi_(identifier)

  8. Hallsworth, J.E.; et al. (2007). "Limits of life in MgCl2-containing environments: chaotropicity defines the window". Environmental Microbiology. 9 (3): 801–813. doi:10.1111/j.1462-2920.2006.01212.x. PMID 17298378. /wiki/Doi_(identifier)

  9. Alves, F.L.; et al. (2015). "Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window". Current Genetics. 61 (3): 457–477. doi:10.1007/s00294-015-0496-8. PMID 26055444. S2CID 14826577. /wiki/Doi_(identifier)

  10. Bhaganna, P.; et al. (2010). "Hydrophobic substances induce water stress in microbial cells". Microbial Biotechnology. 3 (6): 701–716. doi:10.1111/j.1751-7915.2010.00203.x. PMC 3815343. PMID 21255365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815343

  11. Cray, J.A.; et al. (2015). "Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms". Current Opinion in Biotechnology. 33: 228–259. doi:10.1016/j.copbio.2015.02.010. PMID 25841213. /wiki/Doi_(identifier)