The characteristic state function or Massieu's potential in statistical mechanics refers to a particular relationship between the partition function of an ensemble.
In particular, if the partition function P satisfies
P = exp ( − β Q ) ⇔ Q = − 1 β ln ( P ) {\displaystyle P=\exp(-\beta Q)\Leftrightarrow Q=-{\frac {1}{\beta }}\ln(P)} or P = exp ( + β Q ) ⇔ Q = 1 β ln ( P ) {\displaystyle P=\exp(+\beta Q)\Leftrightarrow Q={\frac {1}{\beta }}\ln(P)}in which Q is a thermodynamic quantity, then Q is known as the "characteristic state function" of the ensemble corresponding to "P". Beta refers to the thermodynamic beta.
Examples
- The microcanonical ensemble satisfies Ω ( U , V , N ) = e β T S {\displaystyle \Omega (U,V,N)=e^{\beta TS}\;\,} hence, its characteristic state function is T S {\displaystyle TS} .
- The canonical ensemble satisfies Z ( T , V , N ) = e − β A {\displaystyle Z(T,V,N)=e^{-\beta A}\,\;} hence, its characteristic state function is the Helmholtz free energy A {\displaystyle A} .
- The grand canonical ensemble satisfies Z ( T , V , μ ) = e − β Φ {\displaystyle {\mathcal {Z}}(T,V,\mu )=e^{-\beta \Phi }\,\;} , so its characteristic state function is the Grand potential Φ {\displaystyle \Phi } .
- The isothermal-isobaric ensemble satisfies Δ ( N , T , P ) = e − β G {\displaystyle \Delta (N,T,P)=e^{-\beta G}\;\,} so its characteristic function is the Gibbs free energy G {\displaystyle G} .
State functions are those which tell about the equilibrium state of a system
References
Balian, Roger (2017-11-01). "François Massieu and the thermodynamic potentials". Comptes Rendus Physique. 18 (9–10): 526–530. Bibcode:2017CRPhy..18..526B. doi:10.1016/j.crhy.2017.09.011. ISSN 1631-0705. "Massieu's potentials [...] are directly recovered as logarithms of partition functions." https://doi.org/10.1016%2Fj.crhy.2017.09.011 ↩