In mathematics, the Chebyshev rational functions are a sequence of functions which are both rational and orthogonal. They are named after Pafnuty Chebyshev. A rational Chebyshev function of degree n is defined as:
R n ( x ) = d e f T n ( x − 1 x + 1 ) {\displaystyle R_{n}(x)\ {\stackrel {\mathrm {def} }{=}}\ T_{n}\left({\frac {x-1}{x+1}}\right)}where Tn(x) is a Chebyshev polynomial of the first kind.
Related Image Collections
Add Image
We don't have any YouTube videos related to Chebyshev rational functions yet.
You can add one yourself here.
We don't have any PDF documents related to Chebyshev rational functions yet.
You can add one yourself here.
We don't have any Books related to Chebyshev rational functions yet.
You can add one yourself here.
We don't have any archived web articles related to Chebyshev rational functions yet.
Properties
Many properties can be derived from the properties of the Chebyshev polynomials of the first kind. Other properties are unique to the functions themselves.
Recursion
R n + 1 ( x ) = 2 ( x − 1 x + 1 ) R n ( x ) − R n − 1 ( x ) for n ≥ 1 {\displaystyle R_{n+1}(x)=2\left({\frac {x-1}{x+1}}\right)R_{n}(x)-R_{n-1}(x)\quad {\text{for}}\,n\geq 1}Differential equations
( x + 1 ) 2 R n ( x ) = 1 n + 1 d d x R n + 1 ( x ) − 1 n − 1 d d x R n − 1 ( x ) for n ≥ 2 {\displaystyle (x+1)^{2}R_{n}(x)={\frac {1}{n+1}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n+1}(x)-{\frac {1}{n-1}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n-1}(x)\quad {\text{for }}n\geq 2} ( x + 1 ) 2 x d 2 d x 2 R n ( x ) + ( 3 x + 1 ) ( x + 1 ) 2 d d x R n ( x ) + n 2 R n ( x ) = 0 {\displaystyle (x+1)^{2}x{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}R_{n}(x)+{\frac {(3x+1)(x+1)}{2}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n}(x)+n^{2}R_{n}(x)=0}Orthogonality
Defining:
ω ( x ) = d e f 1 ( x + 1 ) x {\displaystyle \omega (x)\ {\stackrel {\mathrm {def} }{=}}\ {\frac {1}{(x+1){\sqrt {x}}}}}The orthogonality of the Chebyshev rational functions may be written:
∫ 0 ∞ R m ( x ) R n ( x ) ω ( x ) d x = π c n 2 δ n m {\displaystyle \int _{0}^{\infty }R_{m}(x)\,R_{n}(x)\,\omega (x)\,\mathrm {d} x={\frac {\pi c_{n}}{2}}\delta _{nm}}where cn = 2 for n = 0 and cn = 1 for n ≥ 1; δnm is the Kronecker delta function.
Expansion of an arbitrary function
For an arbitrary function f(x) ∈ L2ω the orthogonality relationship can be used to expand f(x):
f ( x ) = ∑ n = 0 ∞ F n R n ( x ) {\displaystyle f(x)=\sum _{n=0}^{\infty }F_{n}R_{n}(x)}where
F n = 2 c n π ∫ 0 ∞ f ( x ) R n ( x ) ω ( x ) d x . {\displaystyle F_{n}={\frac {2}{c_{n}\pi }}\int _{0}^{\infty }f(x)R_{n}(x)\omega (x)\,\mathrm {d} x.}Particular values
R 0 ( x ) = 1 R 1 ( x ) = x − 1 x + 1 R 2 ( x ) = x 2 − 6 x + 1 ( x + 1 ) 2 R 3 ( x ) = x 3 − 15 x 2 + 15 x − 1 ( x + 1 ) 3 R 4 ( x ) = x 4 − 28 x 3 + 70 x 2 − 28 x + 1 ( x + 1 ) 4 R n ( x ) = ( x + 1 ) − n ∑ m = 0 n ( − 1 ) m ( 2 n 2 m ) x n − m {\displaystyle {\begin{aligned}R_{0}(x)&=1\\R_{1}(x)&={\frac {x-1}{x+1}}\\R_{2}(x)&={\frac {x^{2}-6x+1}{(x+1)^{2}}}\\R_{3}(x)&={\frac {x^{3}-15x^{2}+15x-1}{(x+1)^{3}}}\\R_{4}(x)&={\frac {x^{4}-28x^{3}+70x^{2}-28x+1}{(x+1)^{4}}}\\R_{n}(x)&=(x+1)^{-n}\sum _{m=0}^{n}(-1)^{m}{\binom {2n}{2m}}x^{n-m}\end{aligned}}}Partial fraction expansion
R n ( x ) = ∑ m = 0 n ( m ! ) 2 ( 2 m ) ! ( n + m − 1 m ) ( n m ) ( − 4 ) m ( x + 1 ) m {\displaystyle R_{n}(x)=\sum _{m=0}^{n}{\frac {(m!)^{2}}{(2m)!}}{\binom {n+m-1}{m}}{\binom {n}{m}}{\frac {(-4)^{m}}{(x+1)^{m}}}}- Guo, Ben-Yu; Shen, Jie; Wang, Zhong-Qing (2002). "Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval" (PDF). Int. J. Numer. Methods Eng. 53 (1): 65–84. Bibcode:2002IJNME..53...65G. CiteSeerX 10.1.1.121.6069. doi:10.1002/nme.392. S2CID 9208244. Retrieved 2006-07-25.