Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Chebyshev rational functions

In mathematics, the Chebyshev rational functions are a sequence of functions which are both rational and orthogonal. They are named after Pafnuty Chebyshev. A rational Chebyshev function of degree n is defined as:

R n ( x )   = d e f   T n ( x − 1 x + 1 ) {\displaystyle R_{n}(x)\ {\stackrel {\mathrm {def} }{=}}\ T_{n}\left({\frac {x-1}{x+1}}\right)}

where Tn(x) is a Chebyshev polynomial of the first kind.

Related Image Collections Add Image
We don't have any YouTube videos related to Chebyshev rational functions yet.
We don't have any PDF documents related to Chebyshev rational functions yet.
We don't have any Books related to Chebyshev rational functions yet.
We don't have any archived web articles related to Chebyshev rational functions yet.

Properties

Many properties can be derived from the properties of the Chebyshev polynomials of the first kind. Other properties are unique to the functions themselves.

Recursion

R n + 1 ( x ) = 2 ( x − 1 x + 1 ) R n ( x ) − R n − 1 ( x ) for n ≥ 1 {\displaystyle R_{n+1}(x)=2\left({\frac {x-1}{x+1}}\right)R_{n}(x)-R_{n-1}(x)\quad {\text{for}}\,n\geq 1}

Differential equations

( x + 1 ) 2 R n ( x ) = 1 n + 1 d d x R n + 1 ( x ) − 1 n − 1 d d x R n − 1 ( x ) for  n ≥ 2 {\displaystyle (x+1)^{2}R_{n}(x)={\frac {1}{n+1}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n+1}(x)-{\frac {1}{n-1}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n-1}(x)\quad {\text{for }}n\geq 2} ( x + 1 ) 2 x d 2 d x 2 R n ( x ) + ( 3 x + 1 ) ( x + 1 ) 2 d d x R n ( x ) + n 2 R n ( x ) = 0 {\displaystyle (x+1)^{2}x{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}R_{n}(x)+{\frac {(3x+1)(x+1)}{2}}{\frac {\mathrm {d} }{\mathrm {d} x}}R_{n}(x)+n^{2}R_{n}(x)=0}

Orthogonality

Defining:

ω ( x )   = d e f   1 ( x + 1 ) x {\displaystyle \omega (x)\ {\stackrel {\mathrm {def} }{=}}\ {\frac {1}{(x+1){\sqrt {x}}}}}

The orthogonality of the Chebyshev rational functions may be written:

∫ 0 ∞ R m ( x ) R n ( x ) ω ( x ) d x = π c n 2 δ n m {\displaystyle \int _{0}^{\infty }R_{m}(x)\,R_{n}(x)\,\omega (x)\,\mathrm {d} x={\frac {\pi c_{n}}{2}}\delta _{nm}}

where cn = 2 for n = 0 and cn = 1 for n ≥ 1; δnm is the Kronecker delta function.

Expansion of an arbitrary function

For an arbitrary function f(x) ∈ L2ω the orthogonality relationship can be used to expand f(x):

f ( x ) = ∑ n = 0 ∞ F n R n ( x ) {\displaystyle f(x)=\sum _{n=0}^{\infty }F_{n}R_{n}(x)}

where

F n = 2 c n π ∫ 0 ∞ f ( x ) R n ( x ) ω ( x ) d x . {\displaystyle F_{n}={\frac {2}{c_{n}\pi }}\int _{0}^{\infty }f(x)R_{n}(x)\omega (x)\,\mathrm {d} x.}

Particular values

R 0 ( x ) = 1 R 1 ( x ) = x − 1 x + 1 R 2 ( x ) = x 2 − 6 x + 1 ( x + 1 ) 2 R 3 ( x ) = x 3 − 15 x 2 + 15 x − 1 ( x + 1 ) 3 R 4 ( x ) = x 4 − 28 x 3 + 70 x 2 − 28 x + 1 ( x + 1 ) 4 R n ( x ) = ( x + 1 ) − n ∑ m = 0 n ( − 1 ) m ( 2 n 2 m ) x n − m {\displaystyle {\begin{aligned}R_{0}(x)&=1\\R_{1}(x)&={\frac {x-1}{x+1}}\\R_{2}(x)&={\frac {x^{2}-6x+1}{(x+1)^{2}}}\\R_{3}(x)&={\frac {x^{3}-15x^{2}+15x-1}{(x+1)^{3}}}\\R_{4}(x)&={\frac {x^{4}-28x^{3}+70x^{2}-28x+1}{(x+1)^{4}}}\\R_{n}(x)&=(x+1)^{-n}\sum _{m=0}^{n}(-1)^{m}{\binom {2n}{2m}}x^{n-m}\end{aligned}}}

Partial fraction expansion

R n ( x ) = ∑ m = 0 n ( m ! ) 2 ( 2 m ) ! ( n + m − 1 m ) ( n m ) ( − 4 ) m ( x + 1 ) m {\displaystyle R_{n}(x)=\sum _{m=0}^{n}{\frac {(m!)^{2}}{(2m)!}}{\binom {n+m-1}{m}}{\binom {n}{m}}{\frac {(-4)^{m}}{(x+1)^{m}}}}