Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Clebsch representation

In physics and mathematics, the Clebsch representation of an arbitrary three-dimensional vector field v ( x ) {\displaystyle {\boldsymbol {v}}({\boldsymbol {x}})} is:

v = ∇ φ + ψ ∇ χ , {\displaystyle {\boldsymbol {v}}={\boldsymbol {\nabla }}\varphi +\psi \,{\boldsymbol {\nabla }}\chi ,}

where the scalar fields φ ( x ) {\displaystyle \varphi ({\boldsymbol {x}})} , ψ ( x ) {\displaystyle ,\psi ({\boldsymbol {x}})} and χ ( x ) {\displaystyle \chi ({\boldsymbol {x}})} are known as Clebsch potentials or Monge potentials, named after Alfred Clebsch (1833–1872) and Gaspard Monge (1746–1818), and ∇ {\displaystyle {\boldsymbol {\nabla }}} is the gradient operator.

We don't have any images related to Clebsch representation yet.
We don't have any YouTube videos related to Clebsch representation yet.
We don't have any PDF documents related to Clebsch representation yet.
We don't have any Books related to Clebsch representation yet.
We don't have any archived web articles related to Clebsch representation yet.

Background

In fluid dynamics and plasma physics, the Clebsch representation provides a means to overcome the difficulties to describe an inviscid flow with non-zero vorticity – in the Eulerian reference frame – using Lagrangian mechanics and Hamiltonian mechanics.567 At the critical point of such functionals the result is the Euler equations, a set of equations describing the fluid flow. Note that the mentioned difficulties do not arise when describing the flow through a variational principle in the Lagrangian reference frame. In case of surface gravity waves, the Clebsch representation leads to a rotational-flow form of Luke's variational principle.8

For the Clebsch representation to be possible, the vector field v {\displaystyle {\boldsymbol {v}}} has (locally) to be bounded, continuous and sufficiently smooth. For global applicability v {\displaystyle {\boldsymbol {v}}} has to decay fast enough towards infinity.9 The Clebsch decomposition is not unique, and (two) additional constraints are necessary to uniquely define the Clebsch potentials.10 Since ψ ∇ χ {\displaystyle \psi {\boldsymbol {\nabla }}\chi } is in general not solenoidal, the Clebsch representation does not in general satisfy the Helmholtz decomposition.11

Vorticity

The vorticity ω ( x ) {\displaystyle {\boldsymbol {\omega }}({\boldsymbol {x}})} is equal to12

ω = ∇ × v = ∇ × ( ∇ φ + ψ ∇ χ ) = ∇ ψ × ∇ χ , {\displaystyle {\boldsymbol {\omega }}={\boldsymbol {\nabla }}\times {\boldsymbol {v}}={\boldsymbol {\nabla }}\times \left({\boldsymbol {\nabla }}\varphi +\psi \,{\boldsymbol {\nabla }}\chi \right)={\boldsymbol {\nabla }}\psi \times {\boldsymbol {\nabla }}\chi ,}

with the last step due to the vector calculus identity ∇ × ( ψ A ) = ψ ( ∇ × A ) + ∇ ψ × A . {\displaystyle {\boldsymbol {\nabla }}\times (\psi {\boldsymbol {A}})=\psi ({\boldsymbol {\nabla }}\times {\boldsymbol {A}})+{\boldsymbol {\nabla }}\psi \times {\boldsymbol {A}}.} So the vorticity ω {\displaystyle {\boldsymbol {\omega }}} is perpendicular to both ∇ ψ {\displaystyle {\boldsymbol {\nabla }}\psi } and ∇ χ , {\displaystyle {\boldsymbol {\nabla }}\chi ,} while further the vorticity does not depend on φ . {\displaystyle \varphi .}

Notes

References

  1. Lamb (1993, pp. 248–249) - Lamb, H. (1993), Hydrodynamics (6th ed.), Dover, ISBN 978-0-486-60256-1

  2. Serrin (1959, pp. 169–171) - Serrin, J. (1959), "Mathematical principles of classical fluid mechanics", in Flügge, S.; Truesdell, C. (eds.), Strömungsmechanik I [Fluid Dynamics I], Encyclopedia of Physics / Handbuch der Physik, vol. VIII/1, pp. 125–263, Bibcode:1959HDP.....8..125S, doi:10.1007/978-3-642-45914-6_2, ISBN 978-3-642-45916-0, MR 0108116, Zbl 0102.40503 https://ui.adsabs.harvard.edu/abs/1959HDP.....8..125S

  3. Benjamin (1984) - Benjamin, T. Brooke (1984), "Impulse, flow force and variational principles", IMA Journal of Applied Mathematics, 32 (1–3): 3–68, Bibcode:1984JApMa..32....3B, doi:10.1093/imamat/32.1-3.3 https://ui.adsabs.harvard.edu/abs/1984JApMa..32....3B

  4. Aris (1962, pp. 70–72) - Aris, R. (1962), Vectors, tensors, and the basic equations of fluid mechanics, Prentice-Hall, OCLC 299650765 https://search.worldcat.org/oclc/299650765

  5. Clebsch (1859) - Clebsch, A. (1859), "Ueber die Integration der hydrodynamischen Gleichungen", Journal für die Reine und Angewandte Mathematik, 1859 (56): 1–10, doi:10.1515/crll.1859.56.1, S2CID 122730522 https://zenodo.org/record/1448884

  6. Bateman (1929) - Bateman, H. (1929), "Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems", Proceedings of the Royal Society of London A, 125 (799): 598–618, Bibcode:1929RSPSA.125..598B, doi:10.1098/rspa.1929.0189 https://ui.adsabs.harvard.edu/abs/1929RSPSA.125..598B

  7. Seliger & Whitham (1968) - Seliger, R.L.; Whitham, G.B. (1968), "Variational principles in continuum mechanics", Proceedings of the Royal Society of London A, 305 (1440): 1–25, Bibcode:1968RSPSA.305....1S, doi:10.1098/rspa.1968.0103, S2CID 119565234 https://ui.adsabs.harvard.edu/abs/1968RSPSA.305....1S

  8. Luke (1967) - Luke, J.C. (1967), "A variational principle for a fluid with a free surface", Journal of Fluid Mechanics, 27 (2): 395–397, Bibcode:1967JFM....27..395L, doi:10.1017/S0022112067000412, S2CID 123409273 https://ui.adsabs.harvard.edu/abs/1967JFM....27..395L

  9. Wesseling (2001, p. 7) - Wesseling, P. (2001), Principles of computational fluid dynamics, Springer, ISBN 978-3-540-67853-3

  10. Lamb (1993, pp. 248–249) - Lamb, H. (1993), Hydrodynamics (6th ed.), Dover, ISBN 978-0-486-60256-1

  11. Wu, Ma & Zhou (2007, p. 43) - Wu, J.-Z.; Ma, H.-Y.; Zhou, M.-D. (2007), Vorticity and vortex dynamics, Springer, ISBN 978-3-540-29027-8

  12. Serrin (1959, pp. 169–171) - Serrin, J. (1959), "Mathematical principles of classical fluid mechanics", in Flügge, S.; Truesdell, C. (eds.), Strömungsmechanik I [Fluid Dynamics I], Encyclopedia of Physics / Handbuch der Physik, vol. VIII/1, pp. 125–263, Bibcode:1959HDP.....8..125S, doi:10.1007/978-3-642-45914-6_2, ISBN 978-3-642-45916-0, MR 0108116, Zbl 0102.40503 https://ui.adsabs.harvard.edu/abs/1959HDP.....8..125S