Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Cofunction

In mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles (pairs that sum to one right angle). This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620).

For example, sine (Latin: sinus) and cosine (Latin: cosinus, sinus complementi) are cofunctions of each other (hence the "co" in "cosine"):

sin ⁡ ( π 2 − A ) = cos ⁡ ( A ) {\displaystyle \sin \left({\frac {\pi }{2}}-A\right)=\cos(A)} cos ⁡ ( π 2 − A ) = sin ⁡ ( A ) {\displaystyle \cos \left({\frac {\pi }{2}}-A\right)=\sin(A)}

The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens, tangens complementi):

sec ⁡ ( π 2 − A ) = csc ⁡ ( A ) {\displaystyle \sec \left({\frac {\pi }{2}}-A\right)=\csc(A)} csc ⁡ ( π 2 − A ) = sec ⁡ ( A ) {\displaystyle \csc \left({\frac {\pi }{2}}-A\right)=\sec(A)}
tan ⁡ ( π 2 − A ) = cot ⁡ ( A ) {\displaystyle \tan \left({\frac {\pi }{2}}-A\right)=\cot(A)} cot ⁡ ( π 2 − A ) = tan ⁡ ( A ) {\displaystyle \cot \left({\frac {\pi }{2}}-A\right)=\tan(A)}

These equations are also known as the cofunction identities.

This also holds true for the versine (versed sine, ver) and coversine (coversed sine, cvs), the vercosine (versed cosine, vcs) and covercosine (coversed cosine, cvc), the haversine (half-versed sine, hav) and hacoversine (half-coversed sine, hcv), the havercosine (half-versed cosine, hvc) and hacovercosine (half-coversed cosine, hcc), as well as the exsecant (external secant, exs) and excosecant (external cosecant, exc):

ver ⁡ ( π 2 − A ) = cvs ⁡ ( A ) {\displaystyle \operatorname {ver} \left({\frac {\pi }{2}}-A\right)=\operatorname {cvs} (A)} cvs ⁡ ( π 2 − A ) = ver ⁡ ( A ) {\displaystyle \operatorname {cvs} \left({\frac {\pi }{2}}-A\right)=\operatorname {ver} (A)}
vcs ⁡ ( π 2 − A ) = cvc ⁡ ( A ) {\displaystyle \operatorname {vcs} \left({\frac {\pi }{2}}-A\right)=\operatorname {cvc} (A)} cvc ⁡ ( π 2 − A ) = vcs ⁡ ( A ) {\displaystyle \operatorname {cvc} \left({\frac {\pi }{2}}-A\right)=\operatorname {vcs} (A)}
hav ⁡ ( π 2 − A ) = hcv ⁡ ( A ) {\displaystyle \operatorname {hav} \left({\frac {\pi }{2}}-A\right)=\operatorname {hcv} (A)} hcv ⁡ ( π 2 − A ) = hav ⁡ ( A ) {\displaystyle \operatorname {hcv} \left({\frac {\pi }{2}}-A\right)=\operatorname {hav} (A)}
hvc ⁡ ( π 2 − A ) = hcc ⁡ ( A ) {\displaystyle \operatorname {hvc} \left({\frac {\pi }{2}}-A\right)=\operatorname {hcc} (A)} hcc ⁡ ( π 2 − A ) = hvc ⁡ ( A ) {\displaystyle \operatorname {hcc} \left({\frac {\pi }{2}}-A\right)=\operatorname {hvc} (A)}
exs ⁡ ( π 2 − A ) = exc ⁡ ( A ) {\displaystyle \operatorname {exs} \left({\frac {\pi }{2}}-A\right)=\operatorname {exc} (A)} exc ⁡ ( π 2 − A ) = exs ⁡ ( A ) {\displaystyle \operatorname {exc} \left({\frac {\pi }{2}}-A\right)=\operatorname {exs} (A)}
Related Image Collections Add Image
We don't have any YouTube videos related to Cofunction yet.
We don't have any PDF documents related to Cofunction yet.
We don't have any Books related to Cofunction yet.
We don't have any archived web articles related to Cofunction yet.

See also

References

  1. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12. https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up

  2. Aufmann, Richard; Nation, Richard (2014). Algebra and Trigonometry (8 ed.). Cengage Learning. p. 528. ISBN 978-128596583-3. Retrieved 2017-07-28. 978-128596583-3

  3. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  4. Gunter, Edmund (1620). Canon triangulorum. /wiki/Edmund_Gunter

  5. Roegel, Denis, ed. (2010-12-06). "A reconstruction of Gunter's Canon triangulorum (1620)" (Research report). HAL. inria-00543938. Archived from the original on 2017-07-28. Retrieved 2017-07-28. https://hal.inria.fr/inria-00543938/document

  6. Gunter, Edmund (1620). Canon triangulorum. /wiki/Edmund_Gunter

  7. Roegel, Denis, ed. (2010-12-06). "A reconstruction of Gunter's Canon triangulorum (1620)" (Research report). HAL. inria-00543938. Archived from the original on 2017-07-28. Retrieved 2017-07-28. https://hal.inria.fr/inria-00543938/document

  8. Gunter, Edmund (1620). Canon triangulorum. /wiki/Edmund_Gunter

  9. Roegel, Denis, ed. (2010-12-06). "A reconstruction of Gunter's Canon triangulorum (1620)" (Research report). HAL. inria-00543938. Archived from the original on 2017-07-28. Retrieved 2017-07-28. https://hal.inria.fr/inria-00543938/document

  10. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12. https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up

  11. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  12. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12. https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up

  13. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  14. Gunter, Edmund (1620). Canon triangulorum. /wiki/Edmund_Gunter

  15. Roegel, Denis, ed. (2010-12-06). "A reconstruction of Gunter's Canon triangulorum (1620)" (Research report). HAL. inria-00543938. Archived from the original on 2017-07-28. Retrieved 2017-07-28. https://hal.inria.fr/inria-00543938/document

  16. Gunter, Edmund (1620). Canon triangulorum. /wiki/Edmund_Gunter

  17. Roegel, Denis, ed. (2010-12-06). "A reconstruction of Gunter's Canon triangulorum (1620)" (Research report). HAL. inria-00543938. Archived from the original on 2017-07-28. Retrieved 2017-07-28. https://hal.inria.fr/inria-00543938/document

  18. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12. https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up

  19. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  20. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12. https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up

  21. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  22. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12. https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up

  23. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  24. Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [10] Functions of complementary angles". Trigonometry. Vol. Part I: Plane Trigonometry. New York: Henry Holt and Company. pp. 11–12. https://archive.org/stream/planetrigonometr00hallrich#page/n26/mode/1up

  25. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  26. Aufmann, Richard; Nation, Richard (2014). Algebra and Trigonometry (8 ed.). Cengage Learning. p. 528. ISBN 978-128596583-3. Retrieved 2017-07-28. 978-128596583-3

  27. Bales, John W. (2012) [2001]. "5.1 The Elementary Identities". Precalculus. Archived from the original on 2017-07-30. Retrieved 2017-07-30. https://web.archive.org/web/20170730201433/http://jwbales.home.mindspring.com/precal/part5/part5.1.html

  28. Weisstein, Eric Wolfgang. "Coversine". MathWorld. Wolfram Research, Inc. Archived from the original on 2005-11-27. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein

  29. Weisstein, Eric Wolfgang. "Covercosine". MathWorld. Wolfram Research, Inc. Archived from the original on 2014-03-28. Retrieved 2015-11-06. /wiki/Eric_Wolfgang_Weisstein