In mathematics, and particularly category theory, a coherence condition is a collection of conditions requiring that various compositions of elementary morphisms are equal. Typically the elementary morphisms are part of the data of the category. A coherence theorem states that, in order to be assured that all these equalities hold, it suffices to check a small number of identities.
An illustrative example: a monoidal category
Part of the data of a monoidal category is a chosen morphism α A , B , C {\displaystyle \alpha _{A,B,C}} , called the associator:
α A , B , C : ( A ⊗ B ) ⊗ C → A ⊗ ( B ⊗ C ) {\displaystyle \alpha _{A,B,C}\colon (A\otimes B)\otimes C\rightarrow A\otimes (B\otimes C)}for each triple of objects A , B , C {\displaystyle A,B,C} in the category. Using compositions of these α A , B , C {\displaystyle \alpha _{A,B,C}} , one can construct a morphism
( ( A N ⊗ A N − 1 ) ⊗ A N − 2 ) ⊗ ⋯ ⊗ A 1 ) → ( A N ⊗ ( A N − 1 ⊗ ⋯ ⊗ ( A 2 ⊗ A 1 ) ) . {\displaystyle ((A_{N}\otimes A_{N-1})\otimes A_{N-2})\otimes \cdots \otimes A_{1})\rightarrow (A_{N}\otimes (A_{N-1}\otimes \cdots \otimes (A_{2}\otimes A_{1})).}Actually, there are many ways to construct such a morphism as a composition of various α A , B , C {\displaystyle \alpha _{A,B,C}} . One coherence condition that is typically imposed is that these compositions are all equal.1
Typically one proves a coherence condition using a coherence theorem, which states that one only needs to check a few equalities of compositions in order to show that the rest also hold. In the above example, one only needs to check that, for all quadruples of objects A , B , C , D {\displaystyle A,B,C,D} , the following diagram commutes.
Any pair of morphisms from ( ( ⋯ ( A N ⊗ A N − 1 ) ⊗ ⋯ ) ⊗ A 2 ) ⊗ A 1 ) {\displaystyle ((\cdots (A_{N}\otimes A_{N-1})\otimes \cdots )\otimes A_{2})\otimes A_{1})} to ( A N ⊗ ( A N − 1 ⊗ ( ⋯ ⊗ ( A 2 ⊗ A 1 ) ⋯ ) ) {\displaystyle (A_{N}\otimes (A_{N-1}\otimes (\cdots \otimes (A_{2}\otimes A_{1})\cdots ))} constructed as compositions of various α A , B , C {\displaystyle \alpha _{A,B,C}} are equal.
Further examples
Two simple examples that illustrate the definition are as follows. Both are directly from the definition of a category.
Identity
Let f : A → B be a morphism of a category containing two objects A and B. Associated with these objects are the identity morphisms 1A : A → A and 1B : B → B. By composing these with f, we construct two morphisms:
f o 1A : A → B, and 1B o f : A → B.Both are morphisms between the same objects as f. We have, accordingly, the following coherence statement:
f o 1A = f = 1B o f.Associativity of composition
Let f : A → B, g : B → C and h : C → D be morphisms of a category containing objects A, B, C and D. By repeated composition, we can construct a morphism from A to D in two ways:
(h o g) o f : A → D, and h o (g o f) : A → D.We have now the following coherence statement:
(h o g) o f = h o (g o f).In these two particular examples, the coherence statements are theorems for the case of an abstract category, since they follow directly from the axioms; in fact, they are axioms. For the case of a concrete mathematical structure, they can be viewed as conditions, namely as requirements for the mathematical structure under consideration to be a concrete category, requirements that such a structure may meet or fail to meet.
See also
Notes
- Calaque, Damien; Etingof, Pavel (2008). "Lectures on tensor categories". Quantum Groups. IRMA Lectures in Mathematics and Theoretical Physics. Vol. 12. pp. 1–38. arXiv:math/0401246. doi:10.4171/047-1/1. ISBN 978-3-03719-047-0.
- Kelly, G.M (1964). "On MacLane's conditions for coherence of natural associativities, commutativities, etc". Journal of Algebra. 1 (4): 397–402. doi:10.1016/0021-8693(64)90018-3.
- Kelly, G. M.; Laplaza, M.; Lewis, G.; Mac Lane, Saunders (1972). Coherence in Categories. Lecture Notes in Mathematics. Vol. 281. doi:10.1007/BFb0059553. ISBN 978-3-540-05963-9.
- Im, Geun Bin; Kelly, G.M. (1986). "A universal property of the convolution monoidal structure". Journal of Pure and Applied Algebra. 43: 75–88. doi:10.1016/0022-4049(86)90005-8.
- Kassel, Christian (1995). "Tensor Categories". Quantum Groups. Graduate Texts in Mathematics. Vol. 155. pp. 275–293. doi:10.1007/978-1-4612-0783-2_11. ISBN 978-1-4612-6900-7.
- Laplaza, Miguel L. (1972). "Coherence for distributivity". Coherence in Categories. Lecture Notes in Mathematics. Vol. 281. pp. 29–65. doi:10.1007/BFb0059555. ISBN 978-3-540-05963-9.
- Lack, Stephen (2000). "A Coherent Approach to Pseudomonads". Advances in Mathematics. 152 (2): 179–202. doi:10.1006/aima.1999.1881.
- MacLane, Saunders (October 1963). "Natural Associativity and Commutativity". Rice Institute Pamphlet - Rice University Studies. hdl:1911/62865.
- Mac Lane, Saunders (1971). "7. Monoids §2 Coherence". Categories for the working mathematician. Graduate texts in mathematics. Vol. 4. Springer. pp. 161–165. doi:10.1007/978-1-4612-9839-7_8. ISBN 9781461298397.
- MacLane, Saunders; Paré, Robert (1985). "Coherence for bicategories and indexed categories". Journal of Pure and Applied Algebra. 37: 59–80. doi:10.1016/0022-4049(85)90087-8.
- Power, A.J. (1989). "A general coherence result". Journal of Pure and Applied Algebra. 57 (2): 165–173. doi:10.1016/0022-4049(89)90113-8.
- Yanofsky, Noson S. (2000). "The syntax of coherence". Cahiers de Topologie et Géométrie Différentielle Catégoriques. 41 (4): 255–304.
External links
- Malkiewich, Cary; Ponto, Kate (2021). "Coherence for bicategories, lax functors, and shadows". arXiv:2109.01249 [math.CT].
References
(Kelly 1964, Introduction) - Kelly, G.M (1964). "On MacLane's conditions for coherence of natural associativities, commutativities, etc". Journal of Algebra. 1 (4): 397–402. doi:10.1016/0021-8693(64)90018-3. https://doi.org/10.1016%2F0021-8693%2864%2990018-3 ↩