Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Conical spiral
Plane spiral projected onto the surface of a cone

In mathematics, a conical spiral, also known as a conical helix, is a space curve on a right circular cone, whose floor projection is a plane spiral. If the floor projection is a logarithmic spiral, it is called conchospiral (from conch).

Related Image Collections Add Image
We don't have any YouTube videos related to Conical spiral yet.
We don't have any PDF documents related to Conical spiral yet.
We don't have any Books related to Conical spiral yet.
We don't have any archived web articles related to Conical spiral yet.

Parametric representation

In the x {\displaystyle x} - y {\displaystyle y} -plane a spiral with parametric representation

x = r ( φ ) cos ⁡ φ   , y = r ( φ ) sin ⁡ φ {\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi }

a third coordinate z ( φ ) {\displaystyle z(\varphi )} can be added such that the space curve lies on the cone with equation m 2 ( x 2 + y 2 ) = ( z − z 0 ) 2   ,   m > 0 {\displaystyle \;m^{2}(x^{2}+y^{2})=(z-z_{0})^{2}\ ,\ m>0\;}  :

  • x = r ( φ ) cos ⁡ φ   , y = r ( φ ) sin ⁡ φ   , z = z 0 + m r ( φ )   . {\displaystyle x=r(\varphi )\cos \varphi \ ,\qquad y=r(\varphi )\sin \varphi \ ,\qquad \color {red}{z=z_{0}+mr(\varphi )}\ .}

Such curves are called conical spirals.2 They were known to Pappos.

Parameter m {\displaystyle m} is the slope of the cone's lines with respect to the x {\displaystyle x} - y {\displaystyle y} -plane.

A conical spiral can instead be seen as the orthogonal projection of the floor plan spiral onto the cone.

Examples

1) Starting with an archimedean spiral r ( φ ) = a φ {\displaystyle \;r(\varphi )=a\varphi \;} gives the conical spiral (see diagram) x = a φ cos ⁡ φ   , y = a φ sin ⁡ φ   , z = z 0 + m a φ   , φ ≥ 0   . {\displaystyle x=a\varphi \cos \varphi \ ,\qquad y=a\varphi \sin \varphi \ ,\qquad z=z_{0}+ma\varphi \ ,\quad \varphi \geq 0\ .} In this case the conical spiral can be seen as the intersection curve of the cone with a helicoid. 2) The second diagram shows a conical spiral with a Fermat's spiral r ( φ ) = ± a φ {\displaystyle \;r(\varphi )=\pm a{\sqrt {\varphi }}\;} as floor plan. 3) The third example has a logarithmic spiral r ( φ ) = a e k φ {\displaystyle \;r(\varphi )=ae^{k\varphi }\;} as floor plan. Its special feature is its constant slope (see below). Introducing the abbreviation K = e k {\displaystyle K=e^{k}} gives the description: r ( φ ) = a K φ {\displaystyle r(\varphi )=aK^{\varphi }} . 4) Example 4 is based on a hyperbolic spiral r ( φ ) = a / φ {\displaystyle \;r(\varphi )=a/\varphi \;} . Such a spiral has an asymptote (black line), which is the floor plan of a hyperbola (purple). The conical spiral approaches the hyperbola for φ → 0 {\displaystyle \varphi \to 0} .

Properties

The following investigation deals with conical spirals of the form r = a φ n {\displaystyle r=a\varphi ^{n}} and r = a e k φ {\displaystyle r=ae^{k\varphi }} , respectively.

Slope

The slope at a point of a conical spiral is the slope of this point's tangent with respect to the x {\displaystyle x} - y {\displaystyle y} -plane. The corresponding angle is its slope angle (see diagram):

tan ⁡ β = z ′ ( x ′ ) 2 + ( y ′ ) 2 = m r ′ ( r ′ ) 2 + r 2   . {\displaystyle \tan \beta ={\frac {z'}{\sqrt {(x')^{2}+(y')^{2}}}}={\frac {mr'}{\sqrt {(r')^{2}+r^{2}}}}\ .}

A spiral with r = a φ n {\displaystyle r=a\varphi ^{n}} gives:

  • tan ⁡ β = m n n 2 + φ 2   . {\displaystyle \tan \beta ={\frac {mn}{\sqrt {n^{2}+\varphi ^{2}}}}\ .}

For an archimedean spiral, n = 1 {\displaystyle n=1} , and hence its slope is   tan ⁡ β = m 1 + φ 2   . {\displaystyle \ \tan \beta ={\tfrac {m}{\sqrt {1+\varphi ^{2}}}}\ .}

  • For a logarithmic spiral with r = a e k φ {\displaystyle r=ae^{k\varphi }} the slope is   tan ⁡ β = m k 1 + k 2   {\displaystyle \ \tan \beta ={\tfrac {mk}{\sqrt {1+k^{2}}}}\ } (  constant! {\displaystyle \color {red}{\text{ constant!}}} ).

Because of this property a conchospiral is called an equiangular conical spiral.

Arclength

The length of an arc of a conical spiral can be determined by

L = ∫ φ 1 φ 2 ( x ′ ) 2 + ( y ′ ) 2 + ( z ′ ) 2 d φ = ∫ φ 1 φ 2 ( 1 + m 2 ) ( r ′ ) 2 + r 2 d φ   . {\displaystyle L=\int _{\varphi _{1}}^{\varphi _{2}}{\sqrt {(x')^{2}+(y')^{2}+(z')^{2}}}\,\mathrm {d} \varphi =\int _{\varphi _{1}}^{\varphi _{2}}{\sqrt {(1+m^{2})(r')^{2}+r^{2}}}\,\mathrm {d} \varphi \ .}

For an archimedean spiral the integral can be solved with help of a table of integrals, analogously to the planar case:

L = a 2 [ φ ( 1 + m 2 ) + φ 2 + ( 1 + m 2 ) ln ⁡ ( φ + ( 1 + m 2 ) + φ 2 ) ] φ 1 φ 2   . {\displaystyle L={\frac {a}{2}}\left[\varphi {\sqrt {(1+m^{2})+\varphi ^{2}}}+(1+m^{2})\ln \left(\varphi +{\sqrt {(1+m^{2})+\varphi ^{2}}}\right)\right]_{\varphi _{1}}^{\varphi _{2}}\ .}

For a logarithmic spiral the integral can be solved easily:

L = ( 1 + m 2 ) k 2 + 1 k ( r ( φ 2 ) − r ( φ 1 ) )   . {\displaystyle L={\frac {\sqrt {(1+m^{2})k^{2}+1}}{k}}(r{\big (}\varphi _{2})-r(\varphi _{1}){\big )}\ .}

In other cases elliptical integrals occur.

Development

For the development of a conical spiral3 the distance ρ ( φ ) {\displaystyle \rho (\varphi )} of a curve point ( x , y , z ) {\displaystyle (x,y,z)} to the cone's apex ( 0 , 0 , z 0 ) {\displaystyle (0,0,z_{0})} and the relation between the angle φ {\displaystyle \varphi } and the corresponding angle ψ {\displaystyle \psi } of the development have to be determined:

ρ = x 2 + y 2 + ( z − z 0 ) 2 = 1 + m 2 r   , {\displaystyle \rho ={\sqrt {x^{2}+y^{2}+(z-z_{0})^{2}}}={\sqrt {1+m^{2}}}\;r\ ,} φ = 1 + m 2 ψ   . {\displaystyle \varphi ={\sqrt {1+m^{2}}}\psi \ .}

Hence the polar representation of the developed conical spiral is:

  • ρ ( ψ ) = 1 + m 2 r ( 1 + m 2 ψ ) {\displaystyle \rho (\psi )={\sqrt {1+m^{2}}}\;r({\sqrt {1+m^{2}}}\psi )}

In case of r = a φ n {\displaystyle r=a\varphi ^{n}} the polar representation of the developed curve is

ρ = a 1 + m 2 n + 1 ψ n , {\displaystyle \rho =a{\sqrt {1+m^{2}}}^{\,n+1}\psi ^{n},}

which describes a spiral of the same type.

  • If the floor plan of a conical spiral is an archimedean spiral than its development is an archimedean spiral.
In case of a hyperbolic spiral ( n = − 1 {\displaystyle n=-1} ) the development is congruent to the floor plan spiral.

In case of a logarithmic spiral r = a e k φ {\displaystyle r=ae^{k\varphi }} the development is a logarithmic spiral:

ρ = a 1 + m 2 e k 1 + m 2 ψ   . {\displaystyle \rho =a{\sqrt {1+m^{2}}}\;e^{k{\sqrt {1+m^{2}}}\psi }\ .}

Tangent trace

The collection of intersection points of the tangents of a conical spiral with the x {\displaystyle x} - y {\displaystyle y} -plane (plane through the cone's apex) is called its tangent trace.

For the conical spiral

( r cos ⁡ φ , r sin ⁡ φ , m r ) {\displaystyle (r\cos \varphi ,r\sin \varphi ,mr)}

the tangent vector is

( r ′ cos ⁡ φ − r sin ⁡ φ , r ′ sin ⁡ φ + r cos ⁡ φ , m r ′ ) T {\displaystyle (r'\cos \varphi -r\sin \varphi ,r'\sin \varphi +r\cos \varphi ,mr')^{T}}

and the tangent:

x ( t ) = r cos ⁡ φ + t ( r ′ cos ⁡ φ − r sin ⁡ φ )   , {\displaystyle x(t)=r\cos \varphi +t(r'\cos \varphi -r\sin \varphi )\ ,} y ( t ) = r sin ⁡ φ + t ( r ′ sin ⁡ φ + r cos ⁡ φ )   , {\displaystyle y(t)=r\sin \varphi +t(r'\sin \varphi +r\cos \varphi )\ ,} z ( t ) = m r + t m r ′   . {\displaystyle z(t)=mr+tmr'\ .}

The intersection point with the x {\displaystyle x} - y {\displaystyle y} -plane has parameter t = − r / r ′ {\displaystyle t=-r/r'} and the intersection point is

  • ( r 2 r ′ sin ⁡ φ , − r 2 r ′ cos ⁡ φ , 0 )   . {\displaystyle \left({\frac {r^{2}}{r'}}\sin \varphi ,-{\frac {r^{2}}{r'}}\cos \varphi ,0\right)\ .}

r = a φ n {\displaystyle r=a\varphi ^{n}} gives   r 2 r ′ = a n φ n + 1   {\displaystyle \ {\tfrac {r^{2}}{r'}}={\tfrac {a}{n}}\varphi ^{n+1}\ } and the tangent trace is a spiral. In the case n = − 1 {\displaystyle n=-1} (hyperbolic spiral) the tangent trace degenerates to a circle with radius a {\displaystyle a} (see diagram). For r = a e k φ {\displaystyle r=ae^{k\varphi }} one has   r 2 r ′ = r k   {\displaystyle \ {\tfrac {r^{2}}{r'}}={\tfrac {r}{k}}\ } and the tangent trace is a logarithmic spiral, which is congruent to the floor plan, because of the self-similarity of a logarithmic spiral.

References

  1. "Conical helix". MATHCURVE.COM. Retrieved 2022-03-03. https://mathcurve.com/courbes3d.gb/heliceconic/heliceconic.shtml

  2. Siegmund Günther, Anton Edler von Braunmühl, Heinrich Wieleitner: Geschichte der mathematik. G. J. Göschen, 1921, p. 92.

  3. Theodor Schmid: Darstellende Geometrie. Band 2, Vereinigung wissenschaftlichen Verleger, 1921, p. 229.