Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Continuous Hahn polynomials

In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

p n ( x ; a , b , c , d ) = i n ( a + c ) n ( a + d ) n n ! 3 F 2 ( − n , n + a + b + c + d − 1 , a + i x a + c , a + d ; 1 ) {\displaystyle p_{n}(x;a,b,c,d)=i^{n}{\frac {(a+c)_{n}(a+d)_{n}}{n!}}{}_{3}F_{2}\left({\begin{array}{c}-n,n+a+b+c+d-1,a+ix\\a+c,a+d\end{array}};1\right)}

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials Qn(x;a,b,c), and the continuous dual Hahn polynomials Sn(x;a,b,c). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials Qn(x;α,β, N;q), and so on.

We don't have any images related to Continuous Hahn polynomials yet.
We don't have any YouTube videos related to Continuous Hahn polynomials yet.
We don't have any PDF documents related to Continuous Hahn polynomials yet.
We don't have any Books related to Continuous Hahn polynomials yet.
We don't have any archived web articles related to Continuous Hahn polynomials yet.

Orthogonality

The continuous Hahn polynomials pn(x;a,b,c,d) are orthogonal with respect to the weight function

w ( x ) = Γ ( a + i x ) Γ ( b + i x ) Γ ( c − i x ) Γ ( d − i x ) . {\displaystyle w(x)=\Gamma (a+ix)\,\Gamma (b+ix)\,\Gamma (c-ix)\,\Gamma (d-ix).}

In particular, they satisfy the orthogonality relation123

1 2 π ∫ − ∞ ∞ Γ ( a + i x ) Γ ( b + i x ) Γ ( c − i x ) Γ ( d − i x ) p m ( x ; a , b , c , d ) p n ( x ; a , b , c , d ) d x = Γ ( n + a + c ) Γ ( n + a + d ) Γ ( n + b + c ) Γ ( n + b + d ) n ! ( 2 n + a + b + c + d − 1 ) Γ ( n + a + b + c + d − 1 ) δ n m {\displaystyle {\begin{aligned}&{\frac {1}{2\pi }}\int _{-\infty }^{\infty }\Gamma (a+ix)\,\Gamma (b+ix)\,\Gamma (c-ix)\,\Gamma (d-ix)\,p_{m}(x;a,b,c,d)\,p_{n}(x;a,b,c,d)\,dx\\&\qquad \qquad ={\frac {\Gamma (n+a+c)\,\Gamma (n+a+d)\,\Gamma (n+b+c)\,\Gamma (n+b+d)}{n!(2n+a+b+c+d-1)\,\Gamma (n+a+b+c+d-1)}}\,\delta _{nm}\end{aligned}}}

for ℜ ( a ) > 0 {\displaystyle \Re (a)>0} , ℜ ( b ) > 0 {\displaystyle \Re (b)>0} , ℜ ( c ) > 0 {\displaystyle \Re (c)>0} , ℜ ( d ) > 0 {\displaystyle \Re (d)>0} , c = a ¯ {\displaystyle c={\overline {a}}} , d = b ¯ {\displaystyle d={\overline {b}}} .

Recurrence and difference relations

The sequence of continuous Hahn polynomials satisfies the recurrence relation4

x p n ( x ) = p n + 1 ( x ) + i ( A n + C n ) p n ( x ) − A n − 1 C n p n − 1 ( x ) , {\displaystyle xp_{n}(x)=p_{n+1}(x)+i(A_{n}+C_{n})p_{n}(x)-A_{n-1}C_{n}p_{n-1}(x),} where p n ( x ) = n ! ( n + a + b + c + d − 1 ) ! ( 2 n + a + b + c + d − 1 ) ! p n ( x ; a , b , c , d ) , A n = − ( n + a + b + c + d − 1 ) ( n + a + c ) ( n + a + d ) ( 2 n + a + b + c + d − 1 ) ( 2 n + a + b + c + d ) , and C n = n ( n + b + c − 1 ) ( n + b + d − 1 ) ( 2 n + a + b + c + d − 2 ) ( 2 n + a + b + c + d − 1 ) . {\displaystyle {\begin{aligned}{\text{where}}\quad &p_{n}(x)={\frac {n!(n+a+b+c+d-1)!}{(2n+a+b+c+d-1)!}}p_{n}(x;a,b,c,d),\\&A_{n}=-{\frac {(n+a+b+c+d-1)(n+a+c)(n+a+d)}{(2n+a+b+c+d-1)(2n+a+b+c+d)}},\\{\text{and}}\quad &C_{n}={\frac {n(n+b+c-1)(n+b+d-1)}{(2n+a+b+c+d-2)(2n+a+b+c+d-1)}}.\end{aligned}}}

Rodrigues formula

The continuous Hahn polynomials are given by the Rodrigues-like formula5

Γ ( a + i x ) Γ ( b + i x ) Γ ( c − i x ) Γ ( d − i x ) p n ( x ; a , b , c , d ) = ( − 1 ) n n ! d n d x n ( Γ ( a + n 2 + i x ) Γ ( b + n 2 + i x ) Γ ( c + n 2 − i x ) Γ ( d + n 2 − i x ) ) . {\displaystyle {\begin{aligned}&\Gamma (a+ix)\,\Gamma (b+ix)\,\Gamma (c-ix)\,\Gamma (d-ix)\,p_{n}(x;a,b,c,d)\\&\qquad ={\frac {(-1)^{n}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(\Gamma \left(a+{\frac {n}{2}}+ix\right)\,\Gamma \left(b+{\frac {n}{2}}+ix\right)\,\Gamma \left(c+{\frac {n}{2}}-ix\right)\,\Gamma \left(d+{\frac {n}{2}}-ix\right)\right).\end{aligned}}}

Generating functions

The continuous Hahn polynomials have the following generating function:6

∑ n = 0 ∞ Γ ( n + a + b + c + d ) Γ ( a + c + 1 ) Γ ( a + d + 1 ) Γ ( a + b + c + d ) Γ ( n + a + c + 1 ) Γ ( n + a + d + 1 ) ( − i t ) n p n ( x ; a , b , c , d ) = ( 1 − t ) 1 − a − b − c − d 3 F 2 ( 1 2 ( a + b + c + d − 1 ) , 1 2 ( a + b + c + d ) , a + i x a + c , a + d ; − 4 t ( 1 − t ) 2 ) . {\displaystyle {\begin{aligned}&\sum _{n=0}^{\infty }{\frac {\Gamma (n+a+b+c+d)\,\Gamma (a+c+1)\,\Gamma (a+d+1)}{\Gamma (a+b+c+d)\,\Gamma (n+a+c+1)\,\Gamma (n+a+d+1)}}(-it)^{n}p_{n}(x;a,b,c,d)\\&\qquad =(1-t)^{1-a-b-c-d}{}_{3}F_{2}\left({\begin{array}{c}{\frac {1}{2}}(a+b+c+d-1),{\frac {1}{2}}(a+b+c+d),a+ix\\a+c,a+d\end{array}};-{\frac {4t}{(1-t)^{2}}}\right).\end{aligned}}}

A second, distinct generating function is given by

∑ n = 0 ∞ Γ ( a + c + 1 ) Γ ( b + d + 1 ) Γ ( n + a + c + 1 ) Γ ( n + b + d + 1 ) t n p n ( x ; a , b , c , d ) = 1 F 1 ( a + i x a + c ; − i t ) 1 F 1 ( d − i x b + d ; i t ) . {\displaystyle \sum _{n=0}^{\infty }{\frac {\Gamma (a+c+1)\,\Gamma (b+d+1)}{\Gamma (n+a+c+1)\,\Gamma (n+b+d+1)}}t^{n}p_{n}(x;a,b,c,d)=\,_{1}F_{1}\left({\begin{array}{c}a+ix\\a+c\end{array}};-it\right)\,_{1}F_{1}\left({\begin{array}{c}d-ix\\b+d\end{array}};it\right).}

Relation to other polynomials

  • The Wilson polynomials are a generalization of the continuous Hahn polynomials.
  • The Bateman polynomials Fn(x) are related to the special case a=b=c=d=1/2 of the continuous Hahn polynomials by
p n ( x ; 1 2 , 1 2 , 1 2 , 1 2 ) = i n n ! F n ( 2 i x ) . {\displaystyle p_{n}\left(x;{\tfrac {1}{2}},{\tfrac {1}{2}},{\tfrac {1}{2}},{\tfrac {1}{2}}\right)=i^{n}n!F_{n}\left(2ix\right).}
  • The Jacobi polynomials Pn(α,β)(x) can be obtained as a limiting case of the continuous Hahn polynomials:7
P n ( α , β ) = lim t → ∞ t − n p n ( 1 2 x t ; 1 2 ( α + 1 − i t ) , 1 2 ( β + 1 + i t ) , 1 2 ( α + 1 + i t ) , 1 2 ( β + 1 − i t ) ) . {\displaystyle P_{n}^{(\alpha ,\beta )}=\lim _{t\to \infty }t^{-n}p_{n}\left({\tfrac {1}{2}}xt;{\tfrac {1}{2}}(\alpha +1-it),{\tfrac {1}{2}}(\beta +1+it),{\tfrac {1}{2}}(\alpha +1+it),{\tfrac {1}{2}}(\beta +1-it)\right).}

References

  1. Koekoek, Lesky, & Swarttouw (2010), p. 200.

  2. Askey, R. (1985), "Continuous Hahn polynomials", J. Phys. A: Math. Gen. 18: pp. L1017-L1019.

  3. Andrews, Askey, & Roy (1999), p. 333.

  4. Koekoek, Lesky, & Swarttouw (2010), p. 201.

  5. Koekoek, Lesky, & Swarttouw (2010), p. 202.

  6. Koekoek, Lesky, & Swarttouw (2010), p. 202.

  7. Koekoek, Lesky, & Swarttouw (2010), p. 203.