In mathematics, the continuous q-Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
We don't have any images related to Continuous q-Hermite polynomials yet.
You can add one yourself here.
We don't have any YouTube videos related to Continuous q-Hermite polynomials yet.
You can add one yourself here.
We don't have any PDF documents related to Continuous q-Hermite polynomials yet.
You can add one yourself here.
We don't have any Books related to Continuous q-Hermite polynomials yet.
You can add one yourself here.
We don't have any archived web articles related to Continuous q-Hermite polynomials yet.
Definition
The polynomials are given in terms of basic hypergeometric functions by
H n ( x | q ) = e i n θ 2 ϕ 0 [ q − n , 0 − ; q , q n e − 2 i θ ] , x = cos θ . {\displaystyle H_{n}(x|q)=e^{in\theta }{}_{2}\phi _{0}\left[{\begin{matrix}q^{-n},0\\-\end{matrix}};q,q^{n}e^{-2i\theta }\right],\quad x=\cos \,\theta .}Recurrence and difference relations
2 x H n ( x ∣ q ) = H n + 1 ( x ∣ q ) + ( 1 − q n ) H n − 1 ( x ∣ q ) {\displaystyle 2xH_{n}(x\mid q)=H_{n+1}(x\mid q)+(1-q^{n})H_{n-1}(x\mid q)}with the initial conditions
H 0 ( x ∣ q ) = 1 , H − 1 ( x ∣ q ) = 0 {\displaystyle H_{0}(x\mid q)=1,H_{-1}(x\mid q)=0}From the above, one can easily calculate:
H 0 ( x ∣ q ) = 1 H 1 ( x ∣ q ) = 2 x H 2 ( x ∣ q ) = 4 x 2 − ( 1 − q ) H 3 ( x ∣ q ) = 8 x 3 − 2 x ( 2 − q − q 2 ) H 4 ( x ∣ q ) = 16 x 4 − 4 x 2 ( 3 − q − q 2 − q 3 ) + ( 1 − q − q 3 + q 4 ) {\displaystyle {\begin{aligned}H_{0}(x\mid q)&=1\\H_{1}(x\mid q)&=2x\\H_{2}(x\mid q)&=4x^{2}-(1-q)\\H_{3}(x\mid q)&=8x^{3}-2x(2-q-q^{2})\\H_{4}(x\mid q)&=16x^{4}-4x^{2}(3-q-q^{2}-q^{3})+(1-q-q^{3}+q^{4})\end{aligned}}}Generating function
∑ n = 0 ∞ H n ( x ∣ q ) t n ( q ; q ) n = 1 ( t e i θ , t e − i θ ; q ) ∞ {\displaystyle \sum _{n=0}^{\infty }H_{n}(x\mid q){\frac {t^{n}}{(q;q)_{n}}}={\frac {1}{\left(te^{i\theta },te^{-i\theta };q\right)_{\infty }}}}where x = cos θ {\displaystyle \textstyle x=\cos \theta } .
- Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
- Sadjang, Patrick Njionou. Moments of Classical Orthogonal Polynomials (Ph.D.). Universität Kassel. CiteSeerX 10.1.1.643.3896.