Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Convergent matrix
Matrix that converges to zero matrix

In linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.

We don't have any images related to Convergent matrix yet.
We don't have any YouTube videos related to Convergent matrix yet.
We don't have any PDF documents related to Convergent matrix yet.
We don't have any Books related to Convergent matrix yet.
We don't have any archived web articles related to Convergent matrix yet.

Background

When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent.

Definition

We call an n × n matrix T a convergent matrix if

lim k → ∞ ( T k ) i j = 0 , {\displaystyle \lim _{k\to \infty }(\mathbf {T} ^{k})_{ij}=0,} 1

for each i = 1, 2, ..., n and j = 1, 2, ..., n.123

Example

Let

T = ( 1 4 1 2 0 1 4 ) . {\displaystyle {\begin{aligned}&\mathbf {T} ={\begin{pmatrix}{\frac {1}{4}}&{\frac {1}{2}}\\[4pt]0&{\frac {1}{4}}\end{pmatrix}}.\end{aligned}}}

Computing successive powers of T, we obtain

T 2 = ( 1 16 1 4 0 1 16 ) , T 3 = ( 1 64 3 32 0 1 64 ) , T 4 = ( 1 256 1 32 0 1 256 ) , T 5 = ( 1 1024 5 512 0 1 1024 ) , {\displaystyle {\begin{aligned}&\mathbf {T} ^{2}={\begin{pmatrix}{\frac {1}{16}}&{\frac {1}{4}}\\[4pt]0&{\frac {1}{16}}\end{pmatrix}},\quad \mathbf {T} ^{3}={\begin{pmatrix}{\frac {1}{64}}&{\frac {3}{32}}\\[4pt]0&{\frac {1}{64}}\end{pmatrix}},\quad \mathbf {T} ^{4}={\begin{pmatrix}{\frac {1}{256}}&{\frac {1}{32}}\\[4pt]0&{\frac {1}{256}}\end{pmatrix}},\quad \mathbf {T} ^{5}={\begin{pmatrix}{\frac {1}{1024}}&{\frac {5}{512}}\\[4pt]0&{\frac {1}{1024}}\end{pmatrix}},\end{aligned}}} T 6 = ( 1 4096 3 1024 0 1 4096 ) , {\displaystyle {\begin{aligned}\mathbf {T} ^{6}={\begin{pmatrix}{\frac {1}{4096}}&{\frac {3}{1024}}\\[4pt]0&{\frac {1}{4096}}\end{pmatrix}},\end{aligned}}}

and, in general,

T k = ( ( 1 4 ) k k 2 2 k − 1 0 ( 1 4 ) k ) . {\displaystyle {\begin{aligned}\mathbf {T} ^{k}={\begin{pmatrix}({\frac {1}{4}})^{k}&{\frac {k}{2^{2k-1}}}\\[4pt]0&({\frac {1}{4}})^{k}\end{pmatrix}}.\end{aligned}}}

Since

lim k → ∞ ( 1 4 ) k = 0 {\displaystyle \lim _{k\to \infty }\left({\frac {1}{4}}\right)^{k}=0}

and

lim k → ∞ k 2 2 k − 1 = 0 , {\displaystyle \lim _{k\to \infty }{\frac {k}{2^{2k-1}}}=0,}

T is a convergent matrix. Note that ρ(T) = ⁠1/4⁠, where ρ(T) represents the spectral radius of T, since ⁠1/4⁠ is the only eigenvalue of T.

Characterizations

Let T be an n × n matrix. The following properties are equivalent to T being a convergent matrix:

  1. lim k → ∞ ‖ T k ‖ = 0 , {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} for some natural norm;
  2. lim k → ∞ ‖ T k ‖ = 0 , {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} for all natural norms;
  3. ρ ( T ) < 1 {\displaystyle \rho (\mathbf {T} )<1} ;
  4. lim k → ∞ T k x = 0 , {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}\mathbf {x} =\mathbf {0} ,} for every x.4567

Iterative methods

Main article: Iterative method

A general iterative method involves a process that converts the system of linear equations

A x = b {\displaystyle \mathbf {Ax} =\mathbf {b} } 2

into an equivalent system of the form

x = T x + c {\displaystyle \mathbf {x} =\mathbf {Tx} +\mathbf {c} } 3

for some matrix T and vector c. After the initial vector x(0) is selected, the sequence of approximate solution vectors is generated by computing

x ( k + 1 ) = T x ( k ) + c {\displaystyle \mathbf {x} ^{(k+1)}=\mathbf {Tx} ^{(k)}+\mathbf {c} } 4

for each k ≥ 0.89 For any initial vector x(0) ∈ R n {\displaystyle \mathbb {R} ^{n}} , the sequence { x ( k ) } k = 0 ∞ {\displaystyle \lbrace \mathbf {x} ^{\left(k\right)}\rbrace _{k=0}^{\infty }} defined by (4), for each k ≥ 0 and c ≠ 0, converges to the unique solution of (3) if and only if ρ(T) < 1, that is, T is a convergent matrix.1011

Regular splitting

Main article: Matrix splitting

A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. In the system of linear equations (2) above, with A non-singular, the matrix A can be split, that is, written as a difference

A = B − C {\displaystyle \mathbf {A} =\mathbf {B} -\mathbf {C} } 5

so that (2) can be re-written as (4) above. The expression (5) is a regular splitting of A if and only if B−1 ≥ 0 and C ≥ 0, that is, B−1 and C have only nonnegative entries. If the splitting (5) is a regular splitting of the matrix A and A−1 ≥ 0, then ρ(T) < 1 and T is a convergent matrix. Hence the method (4) converges.1213

Semi-convergent matrix

We call an n × n matrix T a semi-convergent matrix if the limit

lim k → ∞ T k {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}} 6

exists.14 If A is possibly singular but (2) is consistent, that is, b is in the range of A, then the sequence defined by (4) converges to a solution to (2) for every x(0) ∈ R n {\displaystyle \mathbb {R} ^{n}} if and only if T is semi-convergent. In this case, the splitting (5) is called a semi-convergent splitting of A.15

See also

Notes

  • Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3.
  • Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0.
  • Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis. 14 (4): 699–705. doi:10.1137/0714047.
  • Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003.
  • Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277.

References

  1. Burden & Faires (1993, p. 404) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd

  2. Isaacson & Keller (1994, p. 14) - Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0

  3. Varga (1962, p. 13) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277

  4. Burden & Faires (1993, p. 404) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd

  5. Isaacson & Keller (1994, pp. 14, 63) - Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0

  6. Varga (1960, p. 122) - Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003. https://lccn.loc.gov/60-60003

  7. Varga (1962, p. 13) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277

  8. Burden & Faires (1993, p. 406) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd

  9. Varga (1962, p. 61) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277

  10. Burden & Faires (1993, p. 412) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd

  11. Isaacson & Keller (1994, pp. 62–63) - Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0

  12. Varga (1960, pp. 122–123) - Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003. https://lccn.loc.gov/60-60003

  13. Varga (1962, p. 89) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277

  14. Meyer & Plemmons (1977, p. 699) - Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis. 14 (4): 699–705. doi:10.1137/0714047. https://doi.org/10.1137%2F0714047

  15. Meyer & Plemmons (1977, p. 700) - Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis. 14 (4): 699–705. doi:10.1137/0714047. https://doi.org/10.1137%2F0714047