In linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.
Background
When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T. A general iterative method converges for every initial vector if T is convergent, and under certain conditions if T is semi-convergent.
Definition
We call an n × n matrix T a convergent matrix if
lim k → ∞ ( T k ) i j = 0 , {\displaystyle \lim _{k\to \infty }(\mathbf {T} ^{k})_{ij}=0,} | 1 |
for each i = 1, 2, ..., n and j = 1, 2, ..., n.123
Example
Let
T = ( 1 4 1 2 0 1 4 ) . {\displaystyle {\begin{aligned}&\mathbf {T} ={\begin{pmatrix}{\frac {1}{4}}&{\frac {1}{2}}\\[4pt]0&{\frac {1}{4}}\end{pmatrix}}.\end{aligned}}}Computing successive powers of T, we obtain
T 2 = ( 1 16 1 4 0 1 16 ) , T 3 = ( 1 64 3 32 0 1 64 ) , T 4 = ( 1 256 1 32 0 1 256 ) , T 5 = ( 1 1024 5 512 0 1 1024 ) , {\displaystyle {\begin{aligned}&\mathbf {T} ^{2}={\begin{pmatrix}{\frac {1}{16}}&{\frac {1}{4}}\\[4pt]0&{\frac {1}{16}}\end{pmatrix}},\quad \mathbf {T} ^{3}={\begin{pmatrix}{\frac {1}{64}}&{\frac {3}{32}}\\[4pt]0&{\frac {1}{64}}\end{pmatrix}},\quad \mathbf {T} ^{4}={\begin{pmatrix}{\frac {1}{256}}&{\frac {1}{32}}\\[4pt]0&{\frac {1}{256}}\end{pmatrix}},\quad \mathbf {T} ^{5}={\begin{pmatrix}{\frac {1}{1024}}&{\frac {5}{512}}\\[4pt]0&{\frac {1}{1024}}\end{pmatrix}},\end{aligned}}} T 6 = ( 1 4096 3 1024 0 1 4096 ) , {\displaystyle {\begin{aligned}\mathbf {T} ^{6}={\begin{pmatrix}{\frac {1}{4096}}&{\frac {3}{1024}}\\[4pt]0&{\frac {1}{4096}}\end{pmatrix}},\end{aligned}}}and, in general,
T k = ( ( 1 4 ) k k 2 2 k − 1 0 ( 1 4 ) k ) . {\displaystyle {\begin{aligned}\mathbf {T} ^{k}={\begin{pmatrix}({\frac {1}{4}})^{k}&{\frac {k}{2^{2k-1}}}\\[4pt]0&({\frac {1}{4}})^{k}\end{pmatrix}}.\end{aligned}}}Since
lim k → ∞ ( 1 4 ) k = 0 {\displaystyle \lim _{k\to \infty }\left({\frac {1}{4}}\right)^{k}=0}and
lim k → ∞ k 2 2 k − 1 = 0 , {\displaystyle \lim _{k\to \infty }{\frac {k}{2^{2k-1}}}=0,}T is a convergent matrix. Note that ρ(T) = 1/4, where ρ(T) represents the spectral radius of T, since 1/4 is the only eigenvalue of T.
Characterizations
Let T be an n × n matrix. The following properties are equivalent to T being a convergent matrix:
- lim k → ∞ ‖ T k ‖ = 0 , {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} for some natural norm;
- lim k → ∞ ‖ T k ‖ = 0 , {\displaystyle \lim _{k\to \infty }\|\mathbf {T} ^{k}\|=0,} for all natural norms;
- ρ ( T ) < 1 {\displaystyle \rho (\mathbf {T} )<1} ;
- lim k → ∞ T k x = 0 , {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}\mathbf {x} =\mathbf {0} ,} for every x.4567
Iterative methods
Main article: Iterative method
A general iterative method involves a process that converts the system of linear equations
A x = b {\displaystyle \mathbf {Ax} =\mathbf {b} } | 2 |
into an equivalent system of the form
x = T x + c {\displaystyle \mathbf {x} =\mathbf {Tx} +\mathbf {c} } | 3 |
for some matrix T and vector c. After the initial vector x(0) is selected, the sequence of approximate solution vectors is generated by computing
x ( k + 1 ) = T x ( k ) + c {\displaystyle \mathbf {x} ^{(k+1)}=\mathbf {Tx} ^{(k)}+\mathbf {c} } | 4 |
for each k ≥ 0.89 For any initial vector x(0) ∈ R n {\displaystyle \mathbb {R} ^{n}} , the sequence { x ( k ) } k = 0 ∞ {\displaystyle \lbrace \mathbf {x} ^{\left(k\right)}\rbrace _{k=0}^{\infty }} defined by (4), for each k ≥ 0 and c ≠ 0, converges to the unique solution of (3) if and only if ρ(T) < 1, that is, T is a convergent matrix.1011
Regular splitting
Main article: Matrix splitting
A matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. In the system of linear equations (2) above, with A non-singular, the matrix A can be split, that is, written as a difference
A = B − C {\displaystyle \mathbf {A} =\mathbf {B} -\mathbf {C} } | 5 |
so that (2) can be re-written as (4) above. The expression (5) is a regular splitting of A if and only if B−1 ≥ 0 and C ≥ 0, that is, B−1 and C have only nonnegative entries. If the splitting (5) is a regular splitting of the matrix A and A−1 ≥ 0, then ρ(T) < 1 and T is a convergent matrix. Hence the method (4) converges.1213
Semi-convergent matrix
We call an n × n matrix T a semi-convergent matrix if the limit
lim k → ∞ T k {\displaystyle \lim _{k\to \infty }\mathbf {T} ^{k}} | 6 |
exists.14 If A is possibly singular but (2) is consistent, that is, b is in the range of A, then the sequence defined by (4) converges to a solution to (2) for every x(0) ∈ R n {\displaystyle \mathbb {R} ^{n}} if and only if T is semi-convergent. In this case, the splitting (5) is called a semi-convergent splitting of A.15
See also
Notes
- Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3.
- Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0.
- Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis. 14 (4): 699–705. doi:10.1137/0714047.
- Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003.
- Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277.
References
Burden & Faires (1993, p. 404) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd ↩
Isaacson & Keller (1994, p. 14) - Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0 ↩
Varga (1962, p. 13) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277 ↩
Burden & Faires (1993, p. 404) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd ↩
Isaacson & Keller (1994, pp. 14, 63) - Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0 ↩
Varga (1960, p. 122) - Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003. https://lccn.loc.gov/60-60003 ↩
Varga (1962, p. 13) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277 ↩
Burden & Faires (1993, p. 406) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd ↩
Varga (1962, p. 61) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277 ↩
Burden & Faires (1993, p. 412) - Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3 https://archive.org/details/numericalanalysi00burd ↩
Isaacson & Keller (1994, pp. 62–63) - Isaacson, Eugene; Keller, Herbert Bishop (1994), Analysis of Numerical Methods, New York: Dover, ISBN 0-486-68029-0 ↩
Varga (1960, pp. 122–123) - Varga, Richard S. (1960). "Factorization and Normalized Iterative Methods". In Langer, Rudolph E. (ed.). Boundary Problems in Differential Equations. Madison: University of Wisconsin Press. pp. 121–142. LCCN 60-60003. https://lccn.loc.gov/60-60003 ↩
Varga (1962, p. 89) - Varga, Richard S. (1962), Matrix Iterative Analysis, New Jersey: Prentice–Hall, LCCN 62-21277 https://lccn.loc.gov/62-21277 ↩
Meyer & Plemmons (1977, p. 699) - Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis. 14 (4): 699–705. doi:10.1137/0714047. https://doi.org/10.1137%2F0714047 ↩
Meyer & Plemmons (1977, p. 700) - Carl D. Meyer, Jr.; R. J. Plemmons (Sep 1977). "Convergent Powers of a Matrix with Applications to Iterative Methods for Singular Linear Systems". SIAM Journal on Numerical Analysis. 14 (4): 699–705. doi:10.1137/0714047. https://doi.org/10.1137%2F0714047 ↩