Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Converse nonimplication
Logical connective

In logic, converse nonimplication is a logical connective which is the negation of converse implication (equivalently, the negation of the converse of implication).

Related Image Collections Add Image
We don't have any YouTube videos related to Converse nonimplication yet.
We don't have any PDF documents related to Converse nonimplication yet.
We don't have any Books related to Converse nonimplication yet.
We don't have any archived web articles related to Converse nonimplication yet.

Definition

Converse nonimplication is notated P ↚ Q {\displaystyle P\nleftarrow Q} , or P ⊄ Q {\displaystyle P\not \subset Q} , and is logically equivalent to ¬ ( P ← Q ) {\displaystyle \neg (P\leftarrow Q)} and ¬ P ∧ Q {\displaystyle \neg P\wedge Q} .

Truth table

The truth table of A ↚ B {\displaystyle A\nleftarrow B} .2

A {\displaystyle A} B {\displaystyle B} A ↚ B {\displaystyle A\nleftarrow B}
FFF
FTT
TFF
TTF

Notation

Converse nonimplication is notated p ↚ q {\textstyle p\nleftarrow q} , which is the left arrow from converse implication ( ← {\textstyle \leftarrow } ), negated with a stroke (/).

Alternatives include

Properties

falsehood-preserving: The interpretation under which all variables are assigned a truth value of 'false' produces a truth value of 'false' as a result of converse nonimplication

Natural language

Grammatical

Example,

If it rains (P) then I get wet (Q), just because I am wet (Q) does not mean it is raining, in reality I went to a pool party with the co-ed staff, in my clothes (~P) and that is why I am facilitating this lecture in this state (Q).

Rhetorical

Q does not imply P.

Colloquial

Boolean algebra

Converse Nonimplication in a general Boolean algebra is defined as q ↚ p = q ′ p {\textstyle q\nleftarrow p=q'p} .

Example of a 2-element Boolean algebra: the 2 elements {0,1} with 0 as zero and 1 as unity element, operators ∼ {\textstyle \sim } as complement operator, ∨ {\textstyle \vee } as join operator and ∧ {\textstyle \wedge } as meet operator, build the Boolean algebra of propositional logic.

∼ x {\textstyle {}\sim x} 10
x01
and
y
111
001
y ∨ x {\textstyle y_{\vee }x} 01x
and
y
101
000
y ∧ x {\textstyle y_{\wedge }x} 01x
then y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} means
y
100
001
y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} 01x
(Negation)(Inclusive or)(And)(Converse nonimplication)

Example of a 4-element Boolean algebra: the 4 divisors {1,2,3,6} of 6 with 1 as zero and 6 as unity element, operators c {\displaystyle \scriptstyle {^{c}}\!} (co-divisor of 6) as complement operator, ∨ {\displaystyle \scriptstyle {_{\vee }}\!} (least common multiple) as join operator and ∧ {\displaystyle \scriptstyle {_{\wedge }}\!} (greatest common divisor) as meet operator, build a Boolean algebra.

x c {\displaystyle \scriptstyle {x^{c}}\!} 6321
x1236
and
y
66666
33636
22266
11236
y ∨ x {\displaystyle \scriptstyle {y_{\vee }x}\!} 1236x
and
y
61236
31133
21212
11111
y ∧ x {\displaystyle \scriptstyle {y_{\wedge }x}} 1236x
then y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} means
y
61111
31212
21133
11236
y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} 1236x
(Co-divisor 6)(Least common multiple)(Greatest common divisor)(x's greatest divisor coprime with y)

Properties

Non-associative

r ↚ ( q ↚ p ) = ( r ↚ q ) ↚ p {\displaystyle r\nleftarrow (q\nleftarrow p)=(r\nleftarrow q)\nleftarrow p} if and only if r p = 0 {\displaystyle rp=0} #s5 (In a two-element Boolean algebra the latter condition is reduced to r = 0 {\displaystyle r=0} or p = 0 {\displaystyle p=0} ). Hence in a nontrivial Boolean algebra Converse Nonimplication is nonassociative. ( r ↚ q ) ↚ p = r ′ q ↚ p (by definition) = ( r ′ q ) ′ p (by definition) = ( r + q ′ ) p (De Morgan's laws) = ( r + r ′ q ′ ) p (Absorption law) = r p + r ′ q ′ p = r p + r ′ ( q ↚ p ) (by definition) = r p + r ↚ ( q ↚ p ) (by definition) {\displaystyle {\begin{aligned}(r\nleftarrow q)\nleftarrow p&=r'q\nleftarrow p&{\text{(by definition)}}\\&=(r'q)'p&{\text{(by definition)}}\\&=(r+q')p&{\text{(De Morgan's laws)}}\\&=(r+r'q')p&{\text{(Absorption law)}}\\&=rp+r'q'p\\&=rp+r'(q\nleftarrow p)&{\text{(by definition)}}\\&=rp+r\nleftarrow (q\nleftarrow p)&{\text{(by definition)}}\\\end{aligned}}}

Clearly, it is associative if and only if r p = 0 {\displaystyle rp=0} .

Non-commutative

  • q ↚ p = p ↚ q {\displaystyle q\nleftarrow p=p\nleftarrow q} if and only if q = p {\displaystyle q=p} #s6. Hence Converse Nonimplication is noncommutative.

Neutral and absorbing elements

  • 0 is a left neutral element ( 0 ↚ p = p {\displaystyle 0\nleftarrow p=p} ) and a right absorbing element ( p ↚ 0 = 0 {\displaystyle {p\nleftarrow 0=0}} ).
  • 1 ↚ p = 0 {\displaystyle 1\nleftarrow p=0} , p ↚ 1 = p ′ {\displaystyle p\nleftarrow 1=p'} , and p ↚ p = 0 {\displaystyle p\nleftarrow p=0} .
  • Implication q → p {\displaystyle q\rightarrow p} is the dual of converse nonimplication q ↚ p {\displaystyle q\nleftarrow p} #s7.
Converse Nonimplication is noncommutative
StepMake use ofResulting in
s.1Definition q ← ~ p = q ′ p {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=q'p\,}\!}
s.2Definition p ← ~ q = p ′ q {\displaystyle \scriptstyle {p{\tilde {\leftarrow }}q=p'q\,}\!}
s.3s.1 s.2 q ← ~ p = p ← ~ q   ⇔   q ′ p = q p ′ {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=p{\tilde {\leftarrow }}q\ \Leftrightarrow \ q'p=qp'\,}\!}
s.4 q {\displaystyle \scriptstyle {q\,}\!} = {\displaystyle \scriptstyle {=\,}\!} q .1 {\displaystyle \scriptstyle {q.1\,}\!}
s.5s.4.right - expand Unit element = {\displaystyle \scriptstyle {=\,}\!} q . ( p + p ′ ) {\displaystyle \scriptstyle {q.(p+p')\,}\!}
s.6s.5.right - evaluate expression = {\displaystyle \scriptstyle {=\,}\!} q p + q p ′ {\displaystyle \scriptstyle {qp+qp'\,}\!}
s.7s.4.left = s.6.right q = q p + q p ′ {\displaystyle \scriptstyle {q=qp+qp'\,}\!}
s.8 q ′ p = q p ′ {\displaystyle \scriptstyle {q'p=qp'\,}\!} ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q p + q p ′ = q p + q ′ p {\displaystyle \scriptstyle {qp+qp'=qp+q'p\,}\!}
s.9s.8 - regroup common factors ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q . ( p + p ′ ) = ( q + q ′ ) . p {\displaystyle \scriptstyle {q.(p+p')=(q+q').p\,}\!}
s.10s.9 - join of complements equals unity ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q .1 = 1. p {\displaystyle \scriptstyle {q.1=1.p\,}\!}
s.11s.10.right - evaluate expression ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q = p {\displaystyle \scriptstyle {q=p\,}\!}
s.12s.8 s.11 q ′ p = q p ′   ⇒   q = p {\displaystyle \scriptstyle {q'p=qp'\ \Rightarrow \ q=p\,}\!}
s.13 q = p   ⇒   q ′ p = q p ′ {\displaystyle \scriptstyle {q=p\ \Rightarrow \ q'p=qp'\,}\!}
s.14s.12 s.13 q = p   ⇔   q ′ p = q p ′ {\displaystyle \scriptstyle {q=p\ \Leftrightarrow \ q'p=qp'\,}\!}
s.15s.3 s.14 q ← ~ p = p ← ~ q   ⇔   q = p {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=p{\tilde {\leftarrow }}q\ \Leftrightarrow \ q=p\,}\!}
Implication is the dual of Converse Nonimplication
StepMake use ofResulting in
s.1Definition dual ⁡ ( q ← ~ p ) {\displaystyle \scriptstyle {\operatorname {dual} (q{\tilde {\leftarrow }}p)\,}\!} = {\displaystyle \scriptstyle {=\,}\!} dual ⁡ ( q ′ p ) {\displaystyle \scriptstyle {\operatorname {dual} (q'p)\,}\!}
s.2s.1.right - .'s dual is + = {\displaystyle \scriptstyle {=\,}\!} q ′ + p {\displaystyle \scriptstyle {q'+p\,}\!}
s.3s.2.right - Involution complement = {\displaystyle \scriptstyle {=\,}\!} ( q ′ + p ) ″ {\displaystyle \scriptstyle {(q'+p)''\,}\!}
s.4s.3.right - De Morgan's laws applied once = {\displaystyle \scriptstyle {=\,}\!} ( q p ′ ) ′ {\displaystyle \scriptstyle {(qp')'\,}\!}
s.5s.4.right - Commutative law = {\displaystyle \scriptstyle {=\,}\!} ( p ′ q ) ′ {\displaystyle \scriptstyle {(p'q)'\,}\!}
s.6s.5.right = {\displaystyle \scriptstyle {=\,}\!} ( p ← ~ q ) ′ {\displaystyle \scriptstyle {(p{\tilde {\leftarrow }}q)'\,}\!}
s.7s.6.right = {\displaystyle \scriptstyle {=\,}\!} p ← q {\displaystyle \scriptstyle {p\leftarrow q\,}\!}
s.8s.7.right = {\displaystyle \scriptstyle {=\,}\!} q → p {\displaystyle \scriptstyle {q\rightarrow p\,}\!}
s.9s.1.left = s.8.right dual ⁡ ( q ← ~ p ) = q → p {\displaystyle \scriptstyle {\operatorname {dual} (q{\tilde {\leftarrow }}p)=q\rightarrow p\,}\!}

Computer science

An example for converse nonimplication in computer science can be found when performing a right outer join on a set of tables from a database, if records not matching the join-condition from the "left" table are being excluded.3

  • Media related to Converse nonimplication at Wikimedia Commons

References

  1. Lehtonen, Eero, and Poikonen, J.H.

  2. Knuth 2011, p. 49 - Knuth, Donald E. (2011). The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1 (1st ed.). Addison-Wesley Professional. ISBN 978-0-201-03804-0.

  3. "A Visual Explanation of SQL Joins". 11 October 2007. Archived from the original on 15 February 2014. Retrieved 24 March 2013. https://web.archive.org/web/20140215193839/http://www.codinghorror.com/blog/2007/10/a-visual-explanation-of-sql-joins.html