Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Conway triangle notation

In geometry, the Conway triangle notation, named after English mathematician John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. However, though the notation was promoted by Conway, a much earlier reference to the notation goes back to the Spanish nineteenth century mathematician gl:Juan Jacobo Durán Loriga.

We don't have any images related to Conway triangle notation yet.
We don't have any YouTube videos related to Conway triangle notation yet.
We don't have any PDF documents related to Conway triangle notation yet.
We don't have any Books related to Conway triangle notation yet.
We don't have any archived web articles related to Conway triangle notation yet.

Definition

Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:

S = b c sin ⁡ A = a c sin ⁡ B = a b sin ⁡ C , {\displaystyle S=bc\sin A=ac\sin B=ab\sin C,}

where S = 2 × area of reference triangle and

S φ = S cot ⁡ φ . , {\displaystyle S_{\varphi }=S\cot \varphi .,} 34

Basic formulas

In particular:

S A = S cot ⁡ A = b c cos ⁡ A = b 2 + c 2 − a 2 2 , {\displaystyle S_{A}=S\cot A=bc\cos A={\frac {b^{2}+c^{2}-a^{2}}{2}},} S B = S cot ⁡ B = a c cos ⁡ B = a 2 + c 2 − b 2 2 , {\displaystyle S_{B}=S\cot B=ac\cos B={\frac {a^{2}+c^{2}-b^{2}}{2}},} S C = S cot ⁡ C = a b cos ⁡ C = a 2 + b 2 − c 2 2 , {\displaystyle S_{C}=S\cot C=ab\cos C={\frac {a^{2}+b^{2}-c^{2}}{2}},} S ω = S cot ⁡ ω = a 2 + b 2 + c 2 2 , {\displaystyle S_{\omega }=S\cot \omega ={\frac {a^{2}+b^{2}+c^{2}}{2}},}      where ω , {\displaystyle \omega ,} is the Brocard angle. The law of cosines is used: a 2 = b 2 + c 2 − 2 b c cos ⁡ A {\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos A} . S π 3 = S cot ⁡ π 3 = S 3 3 , {\displaystyle S_{\frac {\pi }{3}}=S\cot {\frac {\pi }{3}}=S{\frac {\sqrt {3}}{3}},} S 2 φ = S φ 2 − S 2 2 S φ S φ 2 = S φ + S φ 2 + S 2 , {\displaystyle S_{2\varphi }={\frac {S_{\varphi }^{2}-S^{2}}{2S_{\varphi }}}\quad \quad S_{\frac {\varphi }{2}}=S_{\varphi }+{\sqrt {S_{\varphi }^{2}+S^{2}}},}    for values of   φ {\displaystyle \varphi }   where   0 < φ < π , {\displaystyle 0<\varphi <\pi ,} S ϑ + φ = S ϑ S φ − S 2 S ϑ + S φ S ϑ − φ = S ϑ S φ + S 2 S φ − S ϑ , . {\displaystyle S_{\vartheta +\varphi }={\frac {S_{\vartheta }S_{\varphi }-S^{2}}{S_{\vartheta }+S_{\varphi }}}\quad \quad S_{\vartheta -\varphi }={\frac {S_{\vartheta }S_{\varphi }+S^{2}}{S_{\varphi }-S_{\vartheta }}},.}

Furthermore the convention uses a shorthand notation for S ϑ S φ = S ϑ φ , {\displaystyle S_{\vartheta }S_{\varphi }=S_{\vartheta \varphi },} and S ϑ S φ S ψ = S ϑ φ ψ , . {\displaystyle S_{\vartheta }S_{\varphi }S_{\psi }=S_{\vartheta \varphi \psi },.}

Trigonometric relationships

sin ⁡ A = S b c = S S A 2 + S 2 cos ⁡ A = S A b c = S A S A 2 + S 2 tan ⁡ A = S S A , {\displaystyle \sin A={\frac {S}{bc}}={\frac {S}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \cos A={\frac {S_{A}}{bc}}={\frac {S_{A}}{\sqrt {S_{A}^{2}+S^{2}}}}\quad \quad \tan A={\frac {S}{S_{A}}},} a 2 = S B + S C b 2 = S A + S C c 2 = S A + S B . {\displaystyle a^{2}=S_{B}+S_{C}\quad \quad b^{2}=S_{A}+S_{C}\quad \quad c^{2}=S_{A}+S_{B}.}

Important identities

∑ cyclic S A = S A + S B + S C = S ω , {\displaystyle \sum _{\text{cyclic}}S_{A}=S_{A}+S_{B}+S_{C}=S_{\omega },} S 2 = b 2 c 2 − S A 2 = a 2 c 2 − S B 2 = a 2 b 2 − S C 2 , {\displaystyle S^{2}=b^{2}c^{2}-S_{A}^{2}=a^{2}c^{2}-S_{B}^{2}=a^{2}b^{2}-S_{C}^{2},} S B C = S B S C = S 2 − a 2 S A S A C = S A S C = S 2 − b 2 S B S A B = S A S B = S 2 − c 2 S C , {\displaystyle S_{BC}=S_{B}S_{C}=S^{2}-a^{2}S_{A}\quad \quad S_{AC}=S_{A}S_{C}=S^{2}-b^{2}S_{B}\quad \quad S_{AB}=S_{A}S_{B}=S^{2}-c^{2}S_{C},} S A B C = S A S B S C = S 2 ( S ω − 4 R 2 ) S ω = s 2 − r 2 − 4 r R , {\displaystyle S_{ABC}=S_{A}S_{B}S_{C}=S^{2}(S_{\omega }-4R^{2})\quad \quad S_{\omega }=s^{2}-r^{2}-4rR,}

where R is the circumradius and abc = 2SR and where r is the incenter,   s = a + b + c 2 , {\displaystyle s={\frac {a+b+c}{2}},}    and   a + b + c = S r . {\displaystyle a+b+c={\frac {S}{r}}.}

Trigonometric conversions

sin ⁡ A sin ⁡ B sin ⁡ C = S 4 R 2 cos ⁡ A cos ⁡ B cos ⁡ C = S ω − 4 R 2 4 R 2 {\displaystyle \sin A\sin B\sin C={\frac {S}{4R^{2}}}\quad \quad \cos A\cos B\cos C={\frac {S_{\omega }-4R^{2}}{4R^{2}}}} ∑ cyclic sin ⁡ A = S 2 R r = s R ∑ cyclic cos ⁡ A = r + R R ∑ cyclic tan ⁡ A = S S ω − 4 R 2 = tan ⁡ A tan ⁡ B tan ⁡ C . {\displaystyle \sum _{\text{cyclic}}\sin A={\frac {S}{2Rr}}={\frac {s}{R}}\quad \quad \sum _{\text{cyclic}}\cos A={\frac {r+R}{R}}\quad \quad \sum _{\text{cyclic}}\tan A={\frac {S}{S_{\omega }-4R^{2}}}=\tan A\tan B\tan C.}

Useful formulas

∑ cyclic a 2 S A = a 2 S A + b 2 S B + c 2 S C = 2 S 2 ∑ cyclic a 4 = 2 ( S ω 2 − S 2 ) , {\displaystyle \sum _{\text{cyclic}}a^{2}S_{A}=a^{2}S_{A}+b^{2}S_{B}+c^{2}S_{C}=2S^{2}\quad \quad \sum _{\text{cyclic}}a^{4}=2(S_{\omega }^{2}-S^{2}),} ∑ cyclic S A 2 = S ω 2 − 2 S 2 ∑ cyclic S B C = ∑ cyclic S B S C = S 2 ∑ cyclic b 2 c 2 = S ω 2 + S 2 . {\displaystyle \sum _{\text{cyclic}}S_{A}^{2}=S_{\omega }^{2}-2S^{2}\quad \quad \sum _{\text{cyclic}}S_{BC}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2}\quad \quad \sum _{\text{cyclic}}b^{2}c^{2}=S_{\omega }^{2}+S^{2}.}

Applications

Let D be the distance between two points P and Q whose trilinear coordinates are pa : pb : pc and qa : qb : qc. Let Kp = apa + bpb + cpc and let Kq = aqa + bqb + cqc. Then D is given by the formula:

D 2 = ∑ cyclic a 2 S A ( p a K p − q a K q ) 2 , . {\displaystyle D^{2}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {p_{a}}{K_{p}}}-{\frac {q_{a}}{K_{q}}}\right)^{2},.} 5

Distance between circumcenter and orthocenter

Using this formula it is possible to determine OH, the distance between the circumcenter and the orthocenter as follows: For the circumcenter pa = aSA and for the orthocenter qa = SBSC/a

K p = ∑ cyclic a 2 S A = 2 S 2 K q = ∑ cyclic S B S C = S 2 , . {\displaystyle K_{p}=\sum _{\text{cyclic}}a^{2}S_{A}=2S^{2}\quad \quad K_{q}=\sum _{\text{cyclic}}S_{B}S_{C}=S^{2},.}

Hence:

D 2 = ∑ cyclic a 2 S A ( a S A 2 S 2 − S B S C a S 2 ) 2 = 1 4 S 4 ∑ cyclic a 4 S A 3 − S A S B S C S 4 ∑ cyclic a 2 S A + S A S B S C S 4 ∑ cyclic S B S C = 1 4 S 4 ∑ cyclic a 2 S A 2 ( S 2 − S B S C ) − 2 ( S ω − 4 R 2 ) + ( S ω − 4 R 2 ) = 1 4 S 2 ∑ cyclic a 2 S A 2 − S A S B S C S 4 ∑ cyclic a 2 S A − ( S ω − 4 R 2 ) = 1 4 S 2 ∑ cyclic a 2 ( b 2 c 2 − S 2 ) − 1 2 ( S ω − 4 R 2 ) − ( S ω − 4 R 2 ) = 3 a 2 b 2 c 2 4 S 2 − 1 4 ∑ cyclic a 2 − 3 2 ( S ω − 4 R 2 ) = 3 R 2 − 1 2 S ω − 3 2 S ω + 6 R 2 = 9 R 2 − 2 S ω . {\displaystyle {\begin{aligned}D^{2}&{}=\sum _{\text{cyclic}}a^{2}S_{A}\left({\frac {aS_{A}}{2S^{2}}}-{\frac {S_{B}S_{C}}{aS^{2}}}\right)^{2}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{4}S_{A}^{3}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}+{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}S_{B}S_{C}\\&{}={\frac {1}{4S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}(S^{2}-S_{B}S_{C})-2(S_{\omega }-4R^{2})+(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}S_{A}^{2}-{\frac {S_{A}S_{B}S_{C}}{S^{4}}}\sum _{\text{cyclic}}a^{2}S_{A}-(S_{\omega }-4R^{2})\\&{}={\frac {1}{4S^{2}}}\sum _{\text{cyclic}}a^{2}(b^{2}c^{2}-S^{2})-{\frac {1}{2}}(S_{\omega }-4R^{2})-(S_{\omega }-4R^{2})\\&{}={\frac {3a^{2}b^{2}c^{2}}{4S^{2}}}-{\frac {1}{4}}\sum _{\text{cyclic}}a^{2}-{\frac {3}{2}}(S_{\omega }-4R^{2})\\&{}=3R^{2}-{\frac {1}{2}}S_{\omega }-{\frac {3}{2}}S_{\omega }+6R^{2}\\&{}=9R^{2}-2S_{\omega }.\end{aligned}}}

Thus,

O H = 9 R 2 − 2 S ω , . {\displaystyle OH={\sqrt {9R^{2}-2S_{\omega },}}.} 6

See also

References

  1. Chen, Evan (2016). Euclidean Geometry in Mathematical Olympiads. Mathematical Association of America. p. 132. ISBN 978-0883858394. 978-0883858394

  2. Loriga, Juan Jacobo Durán, "Nota sobre el triángulo", en El Progreso Matemático, tomo IV (1894), pages 313-316., Periodico de Matematicas Puras y Aplicadas. https://hemerotecadigital.bne.es/hd/es/viewer?id=60bef4e2-9410-4e51-8dca-5044fc99ba4a

  3. Yiu, Paul (2002), "Notation." §3.4.1 in Introduction to the Geometry of the Triangle. pp. 33-34, Version 2.0402, April 2002 (PDF), Department of Mathematics Florida Atlantic University, pp. 33–34. https://mathematicalolympiads.wordpress.com/wp-content/uploads/2012/08/geometrynotes.pdf

  4. Kimberling, Clark, Encyclopedia of Triangle Centers - ETC, Part 1 "Introduced on November 1, 2011: Combos" Note 6, University of Evansville. https://faculty.evansville.edu/ck6/encyclopedia/ETC.html

  5. Yiu, Paul (2002), "The distance formula" §7.1 in Introduction to the Geometry of the Triangle. p. 87, Version 2.0402, April 2002 (PDF), Department of Mathematics Florida Atlantic University, p. 87. https://mathematicalolympiads.wordpress.com/wp-content/uploads/2012/08/geometrynotes.pdf

  6. Weisstein, Eric W. "Orthocenter §(14)". MathWorld. /wiki/Eric_W._Weisstein