Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Coxeter matroid
Group-theoretic generalization of matroids

In mathematics, Coxeter matroids are generalization of matroids depending on a choice of a Coxeter group W and a parabolic subgroup P. Ordinary matroids correspond to the case when P is a maximal parabolic subgroup of a symmetric group W. They were introduced by Gelfand and Serganova (1987, 1987b), who named them after H. S. M. Coxeter.

Borovik, Gelfand & White (2003) give a detailed account of Coxeter matroids.

We don't have any images related to Coxeter matroid yet.
We don't have any YouTube videos related to Coxeter matroid yet.
We don't have any PDF documents related to Coxeter matroid yet.
We don't have any Books related to Coxeter matroid yet.
We don't have any archived web articles related to Coxeter matroid yet.

Definition

Suppose that W is a Coxeter group, generated by a set S of involutions, and P is a parabolic subgroup (the subgroup generated by some subset of S). A Coxeter matroid is a subset M of W/P that for every w in W, M contains a unique minimal element with respect to the w-Bruhat order.

Relation to matroids

Suppose that the Coxeter group W is the symmetric group Sn and P is the parabolic subgroup Sk×Snk. Then W/P can be identified with the k-element subsets of the n-element set {1,2,...,n} and the elements w of W correspond to the linear orderings of this set. A Coxeter matroid consists of k elements sets such that for each w there is a unique minimal element in the corresponding Bruhat ordering of k-element subsets. This is exactly the definition of a matroid of rank k on an n-element set in terms of bases: a matroid can be defined as some k-element subsets called bases of an n-element set such that for each linear ordering of the set there is a unique minimal base in the Gale ordering of k-element subsets.