In mathematics, specifically set theory, a cumulative hierarchy is a family of sets W α {\displaystyle W_{\alpha }} indexed by ordinals α {\displaystyle \alpha } such that
- W α ⊆ W α + 1 {\displaystyle W_{\alpha }\subseteq W_{\alpha +1}}
- If λ {\displaystyle \lambda } is a limit ordinal, then W λ = ⋃ α < λ W α {\textstyle W_{\lambda }=\bigcup _{\alpha <\lambda }W_{\alpha }}
Some authors additionally require that W α + 1 ⊆ P ( W α ) {\displaystyle W_{\alpha +1}\subseteq {\mathcal {P}}(W_{\alpha })} .
The union W = ⋃ α ∈ O n W α {\textstyle W=\bigcup _{\alpha \in \mathrm {On} }W_{\alpha }} of the sets of a cumulative hierarchy is often used as a model of set theory.
The phrase "the cumulative hierarchy" usually refers to the von Neumann universe, which has W α + 1 = P ( W α ) {\displaystyle W_{\alpha +1}={\mathcal {P}}(W_{\alpha })} .
Reflection principle
A cumulative hierarchy satisfies a form of the reflection principle: any formula in the language of set theory that holds in the union W {\displaystyle W} of the hierarchy also holds in some stages W α {\displaystyle W_{\alpha }} .
Examples
- The von Neumann universe is built from a cumulative hierarchy V α {\displaystyle \mathrm {V} _{\alpha }} .
- The sets L α {\displaystyle \mathrm {L} _{\alpha }} of the constructible universe form a cumulative hierarchy.
- The Boolean-valued models constructed by forcing are built using a cumulative hierarchy.
- The well founded sets in a model of set theory (possibly not satisfying the axiom of foundation) form a cumulative hierarchy whose union satisfies the axiom of foundation.
- Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. ISBN 978-3-540-44085-7. Zbl 1007.03002.
- Zermelo, Ernst (1930). "Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre". Fundamenta Mathematicae. 16: 29–47. doi:10.4064/fm-16-1-29-47.