Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Cyclic subspace
Invariant subspace generated by iteration of an endomorphism

In mathematics, in linear algebra and functional analysis, a cyclic subspace is a certain special subspace of a vector space associated with a vector in the vector space and a linear transformation of the vector space. The cyclic subspace associated with a vector v in a vector space V and a linear transformation T of V is called the T-cyclic subspace generated by v. The concept of a cyclic subspace is a basic component in the formulation of the cyclic decomposition theorem in linear algebra.

We don't have any images related to Cyclic subspace yet.
We don't have any YouTube videos related to Cyclic subspace yet.
We don't have any PDF documents related to Cyclic subspace yet.
We don't have any Books related to Cyclic subspace yet.
We don't have any archived web articles related to Cyclic subspace yet.

Definition

Let T : V → V {\displaystyle T:V\rightarrow V} be a linear transformation of a vector space V {\displaystyle V} and let v {\displaystyle v} be a vector in V {\displaystyle V} . The T {\displaystyle T} -cyclic subspace of V {\displaystyle V} generated by v {\displaystyle v} , denoted Z ( v ; T ) {\displaystyle Z(v;T)} , is the subspace of V {\displaystyle V} generated by the set of vectors { v , T ( v ) , T 2 ( v ) , … , T r ( v ) , … } {\displaystyle \{v,T(v),T^{2}(v),\ldots ,T^{r}(v),\ldots \}} . In the case when V {\displaystyle V} is a topological vector space, v {\displaystyle v} is called a cyclic vector for T {\displaystyle T} if Z ( v ; T ) {\displaystyle Z(v;T)} is dense in V {\displaystyle V} . For the particular case of finite-dimensional spaces, this is equivalent to saying that Z ( v ; T ) {\displaystyle Z(v;T)} is the whole space V {\displaystyle V} . 1

There is another equivalent definition of cyclic spaces. Let T : V → V {\displaystyle T:V\rightarrow V} be a linear transformation of a topological vector space over a field F {\displaystyle F} and v {\displaystyle v} be a vector in V {\displaystyle V} . The set of all vectors of the form g ( T ) v {\displaystyle g(T)v} , where g ( x ) {\displaystyle g(x)} is a polynomial in the ring F [ x ] {\displaystyle F[x]} of all polynomials in x {\displaystyle x} over F {\displaystyle F} , is the T {\displaystyle T} -cyclic subspace generated by v {\displaystyle v} .2

The subspace Z ( v ; T ) {\displaystyle Z(v;T)} is an invariant subspace for T {\displaystyle T} , in the sense that T Z ( v ; T ) ⊂ Z ( v ; T ) {\displaystyle TZ(v;T)\subset Z(v;T)} .

Examples

  1. For any vector space V {\displaystyle V} and any linear operator T {\displaystyle T} on V {\displaystyle V} , the T {\displaystyle T} -cyclic subspace generated by the zero vector is the zero-subspace of V {\displaystyle V} .
  2. If I {\displaystyle I} is the identity operator then every I {\displaystyle I} -cyclic subspace is one-dimensional.
  3. Z ( v ; T ) {\displaystyle Z(v;T)} is one-dimensional if and only if v {\displaystyle v} is a characteristic vector (eigenvector) of T {\displaystyle T} .
  4. Let V {\displaystyle V} be the two-dimensional vector space and let T {\displaystyle T} be the linear operator on V {\displaystyle V} represented by the matrix [ 0 1 0 0 ] {\displaystyle {\begin{bmatrix}0&1\\0&0\end{bmatrix}}} relative to the standard ordered basis of V {\displaystyle V} . Let v = [ 0 1 ] {\displaystyle v={\begin{bmatrix}0\\1\end{bmatrix}}} . Then T v = [ 1 0 ] , T 2 v = 0 , … , T r v = 0 , … {\displaystyle Tv={\begin{bmatrix}1\\0\end{bmatrix}},\quad T^{2}v=0,\ldots ,T^{r}v=0,\ldots } . Therefore { v , T ( v ) , T 2 ( v ) , … , T r ( v ) , … } = { [ 0 1 ] , [ 1 0 ] } {\displaystyle \{v,T(v),T^{2}(v),\ldots ,T^{r}(v),\ldots \}=\left\{{\begin{bmatrix}0\\1\end{bmatrix}},{\begin{bmatrix}1\\0\end{bmatrix}}\right\}} and so Z ( v ; T ) = V {\displaystyle Z(v;T)=V} . Thus v {\displaystyle v} is a cyclic vector for T {\displaystyle T} .

Companion matrix

Let T : V → V {\displaystyle T:V\rightarrow V} be a linear transformation of a n {\displaystyle n} -dimensional vector space V {\displaystyle V} over a field F {\displaystyle F} and v {\displaystyle v} be a cyclic vector for T {\displaystyle T} . Then the vectors

B = { v 1 = v , v 2 = T v , v 3 = T 2 v , … v n = T n − 1 v } {\displaystyle B=\{v_{1}=v,v_{2}=Tv,v_{3}=T^{2}v,\ldots v_{n}=T^{n-1}v\}}

form an ordered basis for V {\displaystyle V} . Let the characteristic polynomial for T {\displaystyle T} be

p ( x ) = c 0 + c 1 x + c 2 x 2 + ⋯ + c n − 1 x n − 1 + x n {\displaystyle p(x)=c_{0}+c_{1}x+c_{2}x^{2}+\cdots +c_{n-1}x^{n-1}+x^{n}} .

Then

T v 1 = v 2 T v 2 = v 3 T v 3 = v 4 ⋮ T v n − 1 = v n T v n = − c 0 v 1 − c 1 v 2 − ⋯ c n − 1 v n {\displaystyle {\begin{aligned}Tv_{1}&=v_{2}\\Tv_{2}&=v_{3}\\Tv_{3}&=v_{4}\\\vdots &\\Tv_{n-1}&=v_{n}\\Tv_{n}&=-c_{0}v_{1}-c_{1}v_{2}-\cdots c_{n-1}v_{n}\end{aligned}}}

Therefore, relative to the ordered basis B {\displaystyle B} , the operator T {\displaystyle T} is represented by the matrix

[ 0 0 0 ⋯ 0 − c 0 1 0 0 … 0 − c 1 0 1 0 … 0 − c 2 ⋮ 0 0 0 … 1 − c n − 1 ] {\displaystyle {\begin{bmatrix}0&0&0&\cdots &0&-c_{0}\\1&0&0&\ldots &0&-c_{1}\\0&1&0&\ldots &0&-c_{2}\\\vdots &&&&&\\0&0&0&\ldots &1&-c_{n-1}\end{bmatrix}}}

This matrix is called the companion matrix of the polynomial p ( x ) {\displaystyle p(x)} .3

See also

References

  1. Hoffman, Kenneth; Kunze, Ray (1971). Linear algebra (2nd ed.). Englewood Cliffs, N.J.: Prentice-Hall, Inc. p. 227. ISBN 9780135367971. MR 0276251. 9780135367971

  2. Hoffman, Kenneth; Kunze, Ray (1971). Linear algebra (2nd ed.). Englewood Cliffs, N.J.: Prentice-Hall, Inc. p. 227. ISBN 9780135367971. MR 0276251. 9780135367971

  3. Hoffman, Kenneth; Kunze, Ray (1971). Linear algebra (2nd ed.). Englewood Cliffs, N.J.: Prentice-Hall, Inc. p. 227. ISBN 9780135367971. MR 0276251. 9780135367971