In category theory, a branch of mathematics, a dinatural transformation α {\displaystyle \alpha } between two functors
S , T : C o p × C → D , {\displaystyle S,T:C^{\mathrm {op} }\times C\to D,}written
α : S → ¨ T , {\displaystyle \alpha :S{\ddot {\to }}T,}is a function that to every object c {\displaystyle c} of C {\displaystyle C} associates an arrow
α c : S ( c , c ) → T ( c , c ) {\displaystyle \alpha _{c}:S(c,c)\to T(c,c)} of D {\displaystyle D}and satisfies the following coherence property: for every morphism f : c → c ′ {\displaystyle f:c\to c'} of C {\displaystyle C} the diagram
commutes.
The composition of two dinatural transformations need not be dinatural.
See also
Notes
- Fosco, Loregian (22 July 2021), (Co)end Calculus, Cambridge University Press, arXiv:1501.02503, doi:10.1017/9781108778657, ISBN 9781108746120, S2CID 237839003
- Dubuc, Eduardo; Street, Ross (1970). "Dinatural transformations". Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics. Vol. 137. pp. 126–137. doi:10.1007/BFb0060443. ISBN 978-3-540-04926-5.
External links
- dinatural transformation at the nLab
References
Mac Lane, Saunders (2013). Categories for the working mathematician. Springer Science & Business Media. p. 218. /wiki/Saunders_Mac_Lane ↩