Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Dittert conjecture
Mathematical hypothesis

The Dittert conjecture, or Dittert–Hajek conjecture, is a mathematical hypothesis in combinatorics concerning the maximum achieved by a particular function ϕ {\displaystyle \phi } of matrices with real, nonnegative entries satisfying a summation condition. The conjecture is due to Eric Dittert and (independently) Bruce Hajek.

Let A = [ a i j ] {\displaystyle A=[a_{ij}]} be a square matrix of order n {\displaystyle n} with nonnegative entries and with ∑ i = 1 n ( ∑ j = 1 n a i j ) = n {\textstyle \sum _{i=1}^{n}\left(\sum _{j=1}^{n}a_{ij}\right)=n} . Its permanent is defined as per ⁡ ( A ) = ∑ σ ∈ S n ∏ i = 1 n a i , σ ( i ) , {\displaystyle \operatorname {per} (A)=\sum _{\sigma \in S_{n}}\prod _{i=1}^{n}a_{i,\sigma (i)},} where the sum extends over all elements σ {\displaystyle \sigma } of the symmetric group.

The Dittert conjecture asserts that the function ϕ ⁡ ( A ) {\displaystyle \operatorname {\phi } (A)} defined by ∏ i = 1 n ( ∑ j = 1 n a i j ) + ∏ j = 1 n ( ∑ i = 1 n a i j ) − per ⁡ ( A ) {\textstyle \prod _{i=1}^{n}\left(\sum _{j=1}^{n}a_{ij}\right)+\prod _{j=1}^{n}\left(\sum _{i=1}^{n}a_{ij}\right)-\operatorname {per} (A)} is (uniquely) maximized when A = ( 1 / n ) J n {\displaystyle A=(1/n)J_{n}} , where J n {\displaystyle J_{n}} is defined to be the square matrix of order n {\displaystyle n} with all entries equal to 1.

We don't have any images related to Dittert conjecture yet.
We don't have any YouTube videos related to Dittert conjecture yet.
We don't have any PDF documents related to Dittert conjecture yet.
We don't have any Books related to Dittert conjecture yet.
We don't have any archived web articles related to Dittert conjecture yet.

References

  1. Hogben, Leslie, ed. (2014). Handbook of Linear Algebra (2nd ed.). CRC Press. pp. 43–8. ISBN 978-1-4665-0729-6. 978-1-4665-0729-6

  2. Cheon, Gi-Sang; Wanless, Ian M. (15 February 2012). "Some results towards the Dittert conjecture on permanents". Linear Algebra and Its Applications. 436 (4): 791–801. doi:10.1016/j.laa.2010.08.041. hdl:1885/28596. https://doi.org/10.1016%2Fj.laa.2010.08.041

  3. Eric R. Dittert at the Mathematics Genealogy Project https://mathgenealogy.org/id.php?id=81909

  4. Bruce Edward Hajek at the Mathematics Genealogy Project https://mathgenealogy.org/id.php?id=14723

  5. Hogben, Leslie, ed. (2014). Handbook of Linear Algebra (2nd ed.). CRC Press. pp. 43–8. ISBN 978-1-4665-0729-6. 978-1-4665-0729-6

  6. Cheon, Gi-Sang; Wanless, Ian M. (15 February 2012). "Some results towards the Dittert conjecture on permanents". Linear Algebra and Its Applications. 436 (4): 791–801. doi:10.1016/j.laa.2010.08.041. hdl:1885/28596. https://doi.org/10.1016%2Fj.laa.2010.08.041